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Abstract. Vascular stenosis measurement 
evaluates the cardiovascular risk and vascular 
disease by use of 3D segmentation. 3D 
segmentation methods of vascular MRI images are 
used in vascular feature characterization by 
parametric deformable models, feature contour 
map and contrast enhancement methods. 
Segmentation is done by object delineation and 
recognition using surrogate vascular marker. T1 
weighted and T2-weighted segmentation methods 
use parametric color-coded feature maps and 3D 
reconstruction rendered images to display different 
plaque and vascular wall features. Segmented wall 
thickness, lumen area and plaque constituents 
appear significant cardiovascular risk indicators 
after automated segmentation of vascular features. 
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Introduction 

Atheromatous plaques develop in the walls of 
large and medium arteries. These include thoracic 
and abdominal arteries, carotid and coronary 
arteries. Common carotid artery bifurcates into 
two internal and external branches. Progressive 
enlargement of plaques narrows the arterial lumen, 
causing vascular stenosis and occlusion. 
Atherosclerosis may become acute asymptomatic 
when an unstable atheromatous plaque ruptures. 
The contents of ruptured plaque are highly 
thrombogenic, causing arterial occlusion ‘emboli’ 
and lead to the development of aneurysm. These 
cause tears longitudinally in the arterial wall. 
Ultimately these tears in wall allow blood to 
escape from their vessel lumen. Vascular magnetic 
resonance imaging (MRI) imaging helps to define 
the nature and extent of vascular disease and 
therapy monitoring for progression or 
reoccurrence after therapy. Image processing is 
used to extract information from vascular imaging. 
Carotid artery segmentation locates the incidence 
of atheroma formation near to bifurcation region. 
AHA classification distinguished the plaque MRI 
features and scored criteria of atherosclerosis 
disease burden.1 Glagov et al.2 classified and 
defined morphological segments of common 
carotid (C1 C2), bifurcation (B1 B2), external and 
internal branches (E1, I1). Atherosclerosis in vivo 
evaluation mainly depends on accurate carotid 
segmentation for vessel wall, plaque chemical 
composition and lumen measurement. However, 
many controversial questions in vascular imaging 
are important such as: isolated plaque or multiple 
lesions, % occlusion or narrowing of lumen in 
vascular segment, site of occlusion either distal or 
proximal to the lesion, presence of collateral 
vessels to provide blood flow around lesion, 
abnormal blood flow patterns. 

In the present paper, locally developed 3D 
segmentation method is demonstrated based on 
algorithms of object delineation and object 
recognition of atherosclerosis vascular wall and 
plaque features; surrogate markers; validation with 
experimental phantom; finally theory of 

evaluation of segmentation method. Our focus was 
to demonstrate the power of segmentation to 
visualize carotid vascular MRI features and plaque 
constituents as possible cardiovascular risk 
predictors. This segmentation approach may be 
applied to other vessels and arteries such as 
femoral and renal arteries. 

Vascular Image Segmentation 

Classifiers and segmentation algorithms extract 
out features and characteristics of image primitives 
or a priori information. This a priori information is 
boundary-based and region-based edge-detection 
approximate gray-level values of carotid vessel wall 
tissue, spatial location of bifurcation to initialize a 
threshold-based or spatial transformation or 
boundary detection and interpretation of wall 
layers. Segmentation depends on thresholding that 
suffers from noise and sampling artifacts. 
Deformable models minimize these problems in 
segmentation. Deformable models are ‘curves’ or 
‘surfaces’ defined within image domain that can 
move under the influence of internal forces within 
the curve or surface it self and external forces that 
are computed from the image data. 

Deformable models as SNAKES or active 
contours 

Parametric deformable models use ‘snakes’ and 
‘curves’. Snakes show direct interaction with the 
model and lead to fast-real time implementation. 
These ‘snakes’ are also known with other names 
such as balloons, surfaces etc. Deformable models 
may be geometric models. Parametric deformable 
models may be two types: ‘energy minimizing 
formulation’ and a ‘dynamic force formulation’. 

Energy Minimization Formulation 

It finds a parameterized curve with minimum 
internal energy (tension or the smoothness of 
contour) and potential energy (local minima at the 
image intensity edges occurring at object 
boundaries). ‘Curve’ may be defined as 
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X(s) = (X(s), Y(s)), s ∈[0,1] which moves 
through the spatial domain of an vascular image to 
minimize the following energy functional 
component: 

E(X) = S(X) + P(X) (1) 

where E(X), S(X) and P(X) are energy functional 
components of curve. 

Dynamic Force Formulation 

The force formulation represents the external 
force as dynamic formulation by dynamics of a 
contour X(s,t): 

μd2X/dt2 = Fdamp(X) + Fin(X) + Fext(X) (2) 

where μ=0 (in segmentation) is coefficient that 
has mass unit and Fdamp is the damping (or viscous) 
force defined as -y dX/dt with y being the damping 
coefficient. Several external forces are now 
applicable to deformable contours and surfaces 
such as multiscale Gaussian potential force, 
pressure force, distance potential force, Gradient 
vector flow, dynamic distance force, interactive 
force. Deformable models generate ‘contours’ by 
finite difference method, dynamic programming, 
greedy algorithm, marching algorithm.3 

Interpretation of Features from 
Segmentation 

Color-coded feature classification aims to the 
specific identification of plaque components. 
Descriptions of regions may be either “Contour-
based” or “Region-based” (in terms of effective 
diameter, circularity and projection).4 

Classification vs. Representation 

Color-coded feature based classification of plaque 
tissue represents the compositional and 
dimensional properties of atherosclerosis lesions. 
However, question of diffuse or semi-solid, fibous, 
collagenous or elastic, still remains a problem into 
one of a finite number of mutually exclusive 

classes. A ‘classifier’ needs to designate and 
separate points representing distinct ‘classes’ with 
assumption that matching points tend to be closer 
with each other away from other points. The 
subset of features yielding minimum P(e) 
represents best set and parametric classifier (Bayes 
method) uses probability structure data class-by-
class to generate ‘feature set’ or class decision for a 
given sample. If data is insufficient, non-
parametric classifier methods (ANN, KNN) are 
used.5 

Quantitative Analysis of 
Segmented Images and 
Algorithms 

The segmentation goals are identification of 
accurate vessel morphology, topology (angles and 
curvatures), correct plaque labeling and voluming. 
It is accomplished by measurement of wall 
thickness, lumen and plaque size. Automatic 
segmentation requires robust and quick methods 
to perform accurate separation and identification 
of vascular structure with minimal amount of user 
interaction. This allows the selective visualization 
(region of interest display), and quantitation of 
vascular function. 

A priori Knowledge Based Image 
Segmentation 

It depends on a priori knowledge. It may involve 
knowledge of approximate gray-level value of a 
tissue class to initialize a threshold based method, 
spatial location of tissue or organs for automated 
selection of training points for a classifier, or shape 
of object. Training points design the spatial 
transformations and constraints for the boundary 
detection algorithms.6 This information can be 
used to improve the specificity and sensitivity of 
the low-level segmentation algorithms. 
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Vasculature Assessment (Object Extraction) 
Algorithm 

Extraction of bifurcation segment starts from 
operator-choice of seed point using following 
strategy. The segment is a 3D portion of 
vasculature. Using seed point, image intensity 
ridges are extracted out approximately same vessel 
dimensions utilizing a priori information supplied. 
The vessel dimensions can be measured 
proportional to the scale.6 The steps are: 

1. Geometry-based semi-automatic segmentation 
using carotid artery magnetic resonance 
angiography (MRA) volume to extract 
bifurcation segment in the region of interest; 

2. Comparison of extracted vessel segments with 
maximum intensity projection of MRI data in 
the region of interest. If bifurcation segment is 
missing, repeat step 1;  

3. Iterative construction of carotid artery 
bifurcation segment;  

4. 3D visualization and interactive editing of 
resulting bifurcation artery segment. 

Artery Visualization and Suppression of 
Overlapping Veins 

Vessel segmentation uses automated process after 
operator selects two points (start and end points) 
of vessel. At the start point location, a search for 
the vessel borders is performed by dynamic 
programming in a plane perpendicular to the 
vessel segment (two interactively marked points). 
Dynamic programming identifies approximately 
elliptic border of artery cross-section and a 
centroid of vessel region is calculated as new 
centerline point. It is mapped to the next plane of 
vessel segment in the direction of segment end.7 
The steps are: 

1. Maximum intensity projection of bifurcation 
region of interest in 3D  

2. Interactive identification of start and end 
points of adjacent veins, and their removal;  

3. Interactive generation of targeted MIP image  

4. Bifurcation segment labeling  

5. Repetition of steps 2, 3, 4 until resulted 
bifurcation MIP image. 

SNAKES Algorithm 

‘Snakes’ are deformable active contour models 
attracted to image features such as edge, lines, 
contours etc. Snake is a energy-minimizing spline 
guided by internal constraint forces and influenced 
by external forces that pull it towards image 
features. These snakes pass by edges. It behaves as 
balloon and skips high intensity points and passes 
over edges that are weaker intensity points. The 
starting point for SNAKES algorithm is manually 
chosen as a single seed point at common carotid 
artery (centroid). Further, application of 3×3 
Sobel edge detector mask to carotid MRA images 
enhances the speed of snake energy minimization. 
At optimized settings of edge force, expansion 
force and use of constants, several node points 
approximate a contour. The vertices of the 
obtained contours are placed in areas with 
significant values of the image gradients. The 
algorithm is the equation determining vertex 
movement. Equation (3) defines the new iterative 
process for finding the SNAKE location. A 
contour by a set of points v(s)=(x(s), y(s)) on an 
image parameterized with respect to the contour 
arc length s. The total energy of the active 
contour is the integration of local energies along 
its normalized contour, which is written as 

Esnake = ∫0..1 Eint + Eext ds (3) 

Eint represents the internal energy of the snake 
that measures the continuity and smoothness of 
the contour. The internal energy can be defined as 
Eint = a(s)|vs(s)|2 + b(s)|vss(s)|2, where vs and vss 
are the first and second derivative of v by the arc 
length s. Eext are external forces, which can be 
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lines, edges and terminations derived from the 
image. 

Eext (ν) = – ∫Ω go (|fM*I| + A*I) ds 
 = – ∫Ω F (ν) ds 

(4) 

where fM represents the Macleod operator, I 
denotes the raw image, go is the gravity constant, 
A is a positive weighting factor, and * represents 
the convolution operator. In addition, Ω defines a 
local area in which the gravity is assumed to be 
effective to current position ν. Depending on 
positive or negative value of fM the contour 
vertices move forward or backward along their 
normal vectors n. Function f in Equation (4) looks 
along the vector n for the maximum value of dot 
product between image gradient and vector n. The 
neighborhood of radius b (in one dimensional 
space) maxima point can be searched. The search 
step is set to a fractional part of a pixel. The 
gradient computed value gives an intensity 
difference on a similar distance. The image 
intensity is calculated by means of bilinear 
interpolation. If the maximum gradient is found 
on the outer side of the contour, function f obtains 
a positive value and the vertex moves towards the 
maxima point is searched. At maxima point inside 
the contour, the vertex moves in the opposite 
direction. The algorithm enables the user to 
change the radius b as one of the parameters 
control the distance of the contour edge located in 
the expected location. In this algorithm, snake 
vertices oscillate near the sharpest edge based on 
the assumption that the initial contour for locating 
the intima always lies above the sub-intima region. 
So the iterative process must be stopped after a 
certain number of iterations (usually ten 
iterations). If the function fM is set to zero in 
Equation (4) the algorithm can be used for 
contour smoothing by using the sequence of ten 
iterations of the full snake algorithm, five 
iterations of smoothing and again five iterations of 
the snake algorithm. The smoothing phase avoids 
spurious edge for the smooth curved object shape. 

Tracking the Carotid Aorta 

This method produces surface as a set of voxels 
with user’s supervision during segmentation 
process and parameter correction.8 The algorithm 
steps are described in the procedure for aorta 
tracking based on connectivity: 

1. Initialization in one of the slices (just under 
the aortic arch) and automatically finding 
starting point and performs segmentation for 
other slices; 

2. Find the descending aorta in all slices under 
the initial one; 

3. The initial point in the next slice is 
determined as an average position of all snake 
points in the previous slice; 

4. The parameter associated with pixel intensity 
is corrected for each slice, so that the product 
p and av is constant, where p is the balloon 
parameter, av is an average pixel value 
computed for certain neighborhood of the 
initial point; and 

5. Segmentation must be repeated only for the 
skipped slices. A maximum number of 
iterations is done that is acceptable for a 
contour approximation. 

If the contour exceeds this number, its average 
position is not used as an initial point for the next 
slice. In that case the last regular snake is used to 
compute the initial point. This feature is used to 
track the aorta, in cases when a single image can 
destroy an entire set by moving the initial point 
completely out of the desired area of the aorta. 

Dynamic Programming Algorithm 

It computes the optimal paths in a graph for 
searching boundaries in one direction based on the 
principle that “an optimal policy has the property 
of whatever the initial state and initial decision 
are, the remaining must constitute an optimal 
policy with regards to the state resulting from the 
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first decision”.9 So, the choice of a transition from 
njto nj+1 can be based on only the cost of optimal 
path to nj and the local cost associated with a 
move from nj to nj+1. 

Both border detection searches are performed in 
small bands along the approximate border 
positions in full resolution data. 

Plaque contrast enhancement methods 

In vivo MRI imaging evaluation of 1-mm thick 
carotid artery image slice with plane resolution of 
0.1 mm visualizes atheroma tissue components 
appearing as dark, brighter and gray areas. Carotid 
artery wall mainly consists outer layer intima, 
outlined by epithelium collagen embedding media 
which is the seat of connective tissue components 
like elastin, collagen, fibrous muscles, blood 
capillaries and deposits including thrombus, 
plaque etc. 

Two important plaque components are 
atheromatous core and fibrous cap generate 
contrast by selecting different TE and TR values.10 
Apparently the major presence of water hydrogen 
atoms in the core in comparison with lipids allows 
better NMR signal by frequency selective methods. 
T2 weighted sequences using broad range of TE 
and TR provide good contrast between plaque 
components with lesser effect of noise, motion 
artifacts, acquisition time demand and longer TE.  

Segmentation and evaluation 

Evaluation of segmentation method 

Evaluation is done by ‘object recognition’ and 
‘delineation’ that depend upon contrast-to-noise 
ratio in segmentation. Image (gray level) display, 
interpolation, filtering, and registration operations 
depend on image segmentation process. 

Quantitative evaluation of segmentation 
algorithms, at the outset, specifies the quality of 

segmentation in terms of technique stability and 
its accuracy depending on various factors: 

• A: An application or task; example: volume 
estimation of atherosclerosis plaque or scene. 

• B: A body region; example: carotid artery 
bifurcation. 

• C: An imaging protocol; example: FSE MR 
imaging with a particular set of parameters. 
Scene: A 3D volume image, denoted by 
ξ = {C, f(c)}, where C is a rectangular array 
of voxels, and f(c) denotes the scene intensity 
of any voxel c in C. ξ may be a vectorial scene, 
meaning that f(c)may be a vector whose 
components represent several imaged 
properties. C is referred to as abinary scene 
ifthe range of f(c)is (0, 1). 

• T: A set of slice-by-slice scenes acquired for 
the given application domain <X,Y,Z>. 

Segmentation of an object ‘o’ in a given scene 
acquired for an application domain <X,Y,Z> is 
the process of defining the region/ boundary of ‘o’ 
in the given scene. It consists of two related tasks -
recognition and delineation. Recognition is a high-
level and qualitative task of determining roughly 
the whereabouts of the object in the scene. 
Delineation is a lower-level and quantitative task 
of specifying the precise location and extent of 
object's region/boundary in the scene. 

Suppose the output of any segmentation algorithm 
corresponding to a given scene e = (C, f) is a set 
of voxels 0 ⊂ C. This set represents the region 
occupied by (the support of) an object o of B in C. 
The fuzzy object defined by o in e is a scene 
eo = (C,fo), where, for any c∈C, 

fo(c)={ η(f(c)), if c∈C; 
 0,  otherwise. 

(5) 

Suppose, eo is itself a fuzzy object. Here η is a 
function that assigns a degree of objectiveness to 
every voxel c in 0 depending on the scene 
intensity f(c). Segmentation in C represents object 
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o in B by 0 and the corresponding fuzzy object by 
eo. 

The efficacy of vascular segmentation method M in 
an application domain <X,Y,Z> depends on three 
factors: precision which represents repeatability of 
segmentation taking into account all subjective 
actions required in producing the result; accuracy, 
which denotes the degree to which the 
segmentation agrees with truth; efficiency, which 
describes the practical viability of the 
segmentation method. 

For carotid vessel as fuzzy object, let us assume the 
operations as: eox = (C, fx), eoy = (C, fy) and 
eoz = (C, fz) be any fuzzy objects defined by the 
same object o in a scene e. Then, the cardinality of 
the fuzzy object is defined as |eox| = Σ c∈C fx(c). 
Fuzzy set union eoz = eox ∪ eoy is defined for any 
c∈C by fz(c) = max (fx(c),fy(c)). Fuzzy set 
intersection eoz = eox ∩ eoy is defined for any c∈C 
by fz(c) = min (fx(c),fy(c)). 

Fuzzy set difference eoz = eox – eoy is defined for any 
c∈C by 

fz(c)={ fx(c) – fy(c), if fy(c)≥0; 
 0,   otherwise. 

(6) 

A fuzzy masking operation, eoz = eox • eoy called 
‘inside’, is defined for any c∈C by 

fz(c)={ fx(c), if fy(c)≠0; 
 0,  otherwise. 

(7) 

Another fuzzy masking operation is eoz = eox ◦ eoy, 
called ‘outside’. It is defined for any c∈C by 

fz(c)={ fx(c), if fy(c)=0; 
 0,  otherwise. 

(8) 

Surrogate of Truth 

In case of in vivo MRI patient images, it is almost 
impossible to establish absolute true segmentation; 
some surrogate of truth for comparison is needed. 
Our basic objective was to develop this framework 
in the light of assumption that operator manually 

outperform computer algorithms in recognition 
tasks, while automated computer algorithms are 
far more efficacious in delineation than it is done 
manually. Accordingly, the surrogates that were 
used reflected this objective. However, the 
delineation and recognition aspects are two 
separate methods. 

Object Delineation 

Five possible choices of the vascular surrogate of 
truth for delineation are outlined below. 

Manual Delineation: It is easier but it is not 
exact. Suppose, corresponding to a given set T of 
scenes for the application domain <X,Y,Z>, 
manual delineation in either of these forms 
produces a set Ttd of scenes representing the fuzzy 
objects defined by the same object represented in 
the scenes in T. Manual ‘delineation’ produces a 
hard set o for each scene C ∈ T, which is later 
converted to a fuzzy object. There are several ways 
of averaging the results to get binary scenes, Ttd. 
The binary objects (o) segmented in each scene 
C ∈ T in multiple trials may be averaged first and 
then the fuzzy object may be computed.  

Automated delineation: Automated delineation 
of vessel boundaries and edge identification 
assesses carotid artery stenosis. An example of 
automated contour delineation of vascular 
boundaries and measurement of wall thickness by 
using SNAKE algorithm is demonstrated in 
present report. In this approach, transform pixel 
coordinates of SNAKE boundary from x,y to radial 
r,θ are used to delineate the outer and inner 
boundaries of the vessel to measure wall thickness.  

Simulated Scenes - 3D Deformations: 3D 
deformations generate simulated scenes to capture 
variations for segmentation. The same method was 
applied for manual segmentation. The complete 
set of scenes (original + deformed) in this case 
constitutes T, and the complete set of 
segmentations represents Ttd. 

Simulated Scenes - Cutoff Regions: Another 
method to simulate vascular scenes first creates an 
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ensemble of “cut-outs” of object regions from 
actual acquired scenes. In second step, these 
“cutouts” of object regions get buried realistically 
in different scenes. Each cut-out may be 
segmented by appropriate segmentation method 
viz. validated, seed growth, supervised etc. The 
cut-out regions contain the object region with a 
background tissue region only without any other 
confounding tissue regions the resulting scenes 
and the segmentations constitute T and Ttd, 
respectively.  

Contour Delineation: Our semi-automatic 
contour delineation technique was modification of 
method Ladak et al.11 based upon the discrete 
dynamic contour (DDC). A DDC is a polyline, a 
sequence of points connected by straight-line 
segments that deforms to fit features in an image. 
DDC drives outwards through a balance of image-
derived forces (which define the edges of the 
vessel), internal forces (which keep the DDC 
smooth in the presence of noise), and damping 
forces (which keep the DDC stable during 
deformation). The image-derived forces are based 
on edges. So, it is necessary to initialize the DDC 
by drawing an approximate outline of the object.  

In our approach, an operator first identifies and 
then crops out the vessel of interest in the given 
image. The operator then draws an approximate 
outline of the inner arterial wall in the form of a 
polygon with four to six vertices. The DDC is then 
deformed towards the inner (lumen/wall) 
boundary, with additional points automatically 
introduced to maintain a fixed spacing (patching) 
between points. In case of unsuccessful 
segmentation (e.g., if part of the contour 
undershoots an edge due to overdamping), 
individual points on the DDC can be manipulated, 
and the DDC is deformed again. Once the 
algorithm successfully finds the inner boundary of 
the arterial wall, this inner contour is saved and 
then inflated by approximately 626 μm (i.e., two 
pixels at the standard 16-cm FOV, and roughly 
equal to the wall thickness of a normal carotid) to 
create a ‘second contour’ as the initial 
approximation for the outer arterial wall boundary. 
This second contour is then automatically 

deformed and saved to fit the outer arterial wall 
boundary in the same manner as described for the 
inner contour.  

Object Recognition 

In evaluation approaches, the overall vascular 
volume delineated by segmentation may not 
match with segmentation truth i.e. some areas of a 
vessel may be missed regions in delineation. If it is 
a crucial landmark area, such as a location of 
lesions, vascularization then missing or 
overestimating could affect important clinical-
decision making for the location of vital regions 
such as vulnerable plaque fibrous cap. It highlights 
the algorithm's recognition performance. 

Prerequisites of object recognition: Plaque as 
true surrogate needs reliable information for 
assessing accuracy of segmentation. It needs 
a priori information related to the object 
(recognition) based on the following strategy: 

1. Compile a list of features/landmarks that are 
vital for <X,Y,Z> through help from a set of 
experts (radiologists, surgeons, cardiovascular-
anatomists). 

2. Each expert assigns a score to each feature to 
indicate its level of importance in <X,Y,Z>. 

3. Compute an average of the scores. Normalize 
these to the range [0,1]. It generates a feature 
vector F whose components have values in 
[0,1]. 

4. Experts locate and delineate the critical 
plaque area of these features in scenes in T 
repeatedly. 

5. Use the mean location and spread information 
and the mean vector F to generate a scene Ctr, 
(for each scene C ∈ T) which is a composite 
of the Gaussian weighted scores for all features 
in the set. In this composite scene 
Ctr = (C,ftr,), a high value ftr(c) for a voxel 
c ∈ C indicates that c is both close to the 
mean location for a particular feature. 
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It generates a scene etr for each feature i in F or 
make Ctr, a vectorial scene. Alternatively, these 
individual scenes etr may be combined into a 
composite scene Ctr, as indicated above by taking 
an average or a fuzzy union. In any case, let Str, 
denote the set of resulting scenes containing 
information about truth in object recognition. 
Object recognition measurements on segmented 
contours: Other approach may be using the inner 
and outer contours (Cin and Cout), to compute six 
measures: 1) arterial wall area (Aw); 2) average 
radius of Cin (Rin); 3) average radius of Cout (Rout); 
4) signal difference to noise ratio (SDNR) at the 
inner wall-blood interface (SDNRin); 5) SDNR at 
the tissue-outer wall interface (SDNRout); and 
6) SNR within the wall. 

Using this approach, wall area was calculated by 
subtracting the area enclosed by Cin from the area 
enclosed by Cout. Since the computed wall areas 
are dependent on both Cin and Cout, Rin and Rout 
were calculated to characterize the effects of 
resolution and noise on these contours 
individually.12 Rin was calculated by finding the 
average distance between Cin and its centroid. Rout 
was calculated similarly from Cout. 

For ‘edge detection’ algorithm, a particularly 
convenient and appropriate measure is the SDNR 
difference at the inner wall-blood interface 
(SDNRin) and the tissue-outer wall interface 
(SDNRout) to detect the edge between the regions. 
SDNR served as objective measure of quality for 
interfaces. It is calculated by taking the ratio of the 
signal difference at the interface of interest and 
the standard deviation (SD) of pixel values with in 
an area of no signal. Each inner-outer wall 
boundary contour pair (Cin and Cout) from a given 
image generated two additional contours 
automatically: a deflated inner boundary contour 
(Cdef) was created by moving the nodes of the 
inner boundary contour 626 μm inward in a 
direction normal to Cin while an inflated outer 
contour (Cinf) was created by moving the nodes of 
Cout 626 μm outward in a direction normal to Cout. 
It calculates SDNRin by subtracting the mean pixel 
value of the wall region (bounded by Cin and Cout) 
from the mean pixel value of the blood boundary 

region (bounded by Cdef and Cin) and dividing by 
the SD of pixel values in the blood-core region 
(enclosed by Cdef). In the same way, SDNRout is 
calculated by subtraction of the mean pixel value 
of the tissue-boundary region (bounded by Cinf and 
Cout) from the mean pixel value in the wall region 
(bounded by Cin and Cout) and dividing it by the 
SD of pixel values in the blood-core region. Mean 
pixel value of the wall region (bounded by Cin and 
Cout) divided by the SD of pixel values in the 
blood-core region gives SNR. So, both SDNRin 
and SDNRout are measures of “interface quality” 
associated with the Cin and Cout contours. 

3D reconstruction and 3D rendering 
analysis 

Three-dimensional analysis of stacked gray scale 
images or of stacked binary image was performed 
on computer as geometrical transformations 
(rotation, translation and zooming) by use of the 
“reslicing” and “projective imaging” tools of the 
NIH-Image 1.63 software .12 Volumetric analysis 
was be done after 3-D reconstruction in rotating 
frame using Vision 2.5 software as described with 
example in the following results. 3D 
reconstruction was done by use of contour image 
series of the specimen surfaces and of the internal 
structures display. Marching cube algorithms 
generated three-dimensional models based on 
feature vectors and cluster partitioning for 
geometrical transformation, projection, hidden-
part removal and shading. These models can be 
viewed from all angles and can be animated for 
enhanced 3D effect using the “Vascular Display” 
module of the image Vision 2.5 software. 
Commonly available alternative methods of 
rendering are z-buffer technique, ray-casting, 
‘surface approximation’ and ‘voxel projection’ in 
vascular 3D rendering based on distinct blocks of 
different translucencies (opacity) of each binary 
scence (vascular regions at plaque interface) at 
various angles. In other words, different density of 
each voxel shows distinct opacity and color. 
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Imaging and Postprocessing 

Image Acquisition for Carotid Artery 
Bifurcation 

MRI images (n=14) were used for segmentation 
and registration. These MRI images were earlier 
acquired as part of a pilot study using 1.5 T GE 
Signa Lx Horizon attached Cardiac Imaging 
system at Methodist Hospital, Houston with ECG 
gating and appropriate parameters (Table 1) to get 
images with the same or nearly-same phase of 
cardiac cycle.10 

Multicontrast Protocol 

With a multicontrast protocol using T1-, proton 
density-, and T2-weighted images generated actual 
area of carotid artery with different tissue features 
due to their different Larmor frequencies of plaque 
constituents resulting in specific T1 and T2 values 
and signal intensities.12, 13 

T1 Parametric Contrast Method 

Two 3D image analysis algorithms, one a nearest-
neighbor (ANN) tissue segmentation algorithm, 
the other a ‘surface modeling’ algorithm, were 
applied to serial MR images.14 The algorithms 
operate on different principles to determine tissue 
volume: the nearest-neighbor approach used 
manually identified ‘tag’ points to assist in 
classifying tissue types while ‘boundary’ and 
‘volumes’ are calculated automatically. The 

surface-modeling algorithm relied on manual 
segmentation while volume determination was 
automated. Volumes of contrast enhancement and 
rates of volumetric change were determined by 
both algorithms. The tissue segmentation 
algorithm was used to create 3D maps.14 

T2 Parametric Imaging for Segmentation 
and Quantification of Plaque Components 

T2 parametric segmentation was based on their 
TE and TR values as earlier described elsewhere.15 

Supervised Semi-automated Parametric 
Color-coded Segmentation Method 

Color-coding segmentation by using k-nearest 
neighbor algorithm (k-NN) was utilized to create a 
stack of color-coded segmented image slices. It 
discards seed points. Connectivity algorithm 
classifies the color coded features. The method 
was based on color-coded pixel intensity 
probability distribution.16 Similarly, voxel-coding 
probability provides voxel-by-voxel parameters for 
automated structure parameterization. A 
supervised classifier was used to derive binary map. 
In each 2D slice a fast algorithm propagates a 
distance field from image exterior to interior. 
Local maxima distances were identified. The 
second shortest voxel paths to exterior were also 
identified. A third distance field is traversed to 
establish object connectivity between slices, and 
resulting voxel set is uniformly re-parameterized 
and triangulated as described in detail elsewhere.17 

Table 1 Scan imaging parameters of the different pulse sequences for image acquisition with different T1/T2/proton 
density (PD) weighting for carotid artery bifurcation. 

Plane Slices Pulse 
sequence PSD Flip 

Angle TR/TE Gated  
BW Thick/Sp FOV Matrix NEX 

weight 
Sagittal 11 FSE,ETL=12 - 90 2000/26 - 64 4/4 24x24 1 PD W 
2D TOF 50 GRE,ETL=12 2DTOF 60 24/5 - 64 1.5/0 16x12 1 T1 W 

Axial 6 FSE,ETL=8 - 90 2200/32 2RR 64 3/0 13x13 2 PD W 
Axial 5 FSE,ETL=3 - 90 550/16 - 32 3/0 13x13 2 T1 W 
Axial 6 FSE,ETL=18 FSE-XL 90 2500/108 3RR 62 3/0 13x13 3 T2 W 
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3D Reconstruction Display 

Volume rendering was done by using Volume J a 
java image processing program for DICOM multi-
slice stacked images. For surface rendering, 
VISION 5.4 and VTK software generated 3D 
graphic view of vascular frame.18 

Plaque Volume Measurement 

It may be calculated from the outer wall radius (R) 
and inner wall radius (r) and length of plaque rich 
segment as:  

V(maximum) – V(minimum) =L(2R+r) B/6 (9) 

where B is small plaque-rich region on MR image 
of the plaque. The difference in outer and 
innerwall volumes comes out as plaque volume as 
validated elsewhere19 and shown in Figure 10. 

Results 

The 3D TOF FSE images showed distinct 
quantifiable wall boundaries, however, different 
flow rates appeared visibly to artifact these image 
signal intensities (Figure 1). Wall thickness and 
atheroma size were main distinct features to assess 
plaque stenosis and vulnerability. 

Multislice comparison showed good agreement 
between segmentation truth and postsegmented 
delineated wall measurements of inner and outer 
wall perimeters, lumen size and plaque curves at 
the bifurcation landmark on in vivo MRI images 
(Figures 2-4). Interestingly, at different levels of 
carotid vessel after supervised multiparametric 
color-coded feature maps of the lumen size and 
wall thickness gave an estimate of extent for % 
stenosis and plaque tissue proton density with 
distinct color (Figure 5). For true estimate of 
dimensions, intact plaque and its histology section 
with plaque features are shown (Figure 6). 

 

Figure 1 3D TOF FSE images of carotid artery at the 
level of bifurcation show distinct plaque sites. 

 

Figure 2 An in vivo postsegmented carotid artery 
plaque shows the distinct wall thickness and delineated 
wall boundaries representing different wall thickness in 
different slices. 

 

Figure 3 The method of 3D multislice stereographic 
display at different levels (left) and wall delineation by 
SNAKES algorithm demonstrates the measurement of 
outer and inner wall radii (right). 
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Figure 4 Supervised multiparametric color-coded 
feature maps show lumen size and wall thickness (left 
panel). Contours with different signal intensities of 
different plaque consituents (right panel). Notice the 
plaque visibility on in vivo images. 

 

Figure 5 Semiautomated delineation is shown on 
multiparametric color-coded feature map to 
demonstrate the measurement of % stenosis (top panel) 
and lumen size (bottom panel). 

T1 parametric contrast: T1 values of images 
provided less information than T2 values or 
proton density images. Due to dependence of T1 
and T2 relaxation times upon magnetic field, it 
might not allow same MRI criteria. It needed 
appropriate TE and TR choice for in vivo 

microimaging application using 1.5 T MRI clinical 
imager. However, wall measurement in 
postsegmented carotid arteries was better due to 
sharp edges (Figure 7) while plaque features were 
poorly measurable. 

T2 parametric contrast: Specifically, spin-spin 
relaxation time T2 of image micro-dissected 
necrotic core at different sets of TE settings, 
overcome the problem of observed darker T2 
images than actual low signal of plaque 
components e.g. fibrocellular and thrombus 
contents. On other hand, the wall measurement 
was not as good as measured by T1 parametric 
segmentation (Figure 8). 

Multiparametric contrast: Combined 
T1/T2/proton density multiparametric approach 
allowed interactive segmentation by color cluster 
statistics (as 3D histograms) and tracking stereo 
display of different tissue constituents (Figure 9).15 

3D Reconstruction: 3D reconstruction of staked 
DICOM images showed as contiguous display. The 
plaque in situ 3D features were distinct and plaque 
volume measurement was based on using 
curvature and outer and inner radii (Figure 10). 

Volume rendering and 3D display: NIH Image J 
interfaced with Volume J was used for 3D graphic 
display and staked cross-sectional 3D display was 
obtained by VTK software. The minimum 
intensity projection (MIP) stacked slices 
demonstrated the calcification on transverse sites 
while 3D surface rendering demonstrated features 
in longitudinal sites along the wall (Figure 11). 

 

Figure 6 A comparison of plaque histology (left 
panel) and endarterectomy (right panel) shows true 
wall thickness and plaque features as surrogate markers 
for MRI segmentation. 
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Figure 7 T1 parametric segmentation is shown to 
highlight wall thickness at various segments as 
contiguous postsegmented images of carotid 
endarterectomy sample. 

 

Figure 8 T2 parametric segmentation is shown to 
highlight wall thickness at various segments as 
contiguous postsegmented images of carotid 
endarterectomy sample. 

 

Figure 9 Multicontrast ex vivo MR images of a 
carotid endarterectomy sample shows distinct features 
of plaque on T1-weighted (left); proton density-
weighted (in center); and T2-weighted (right) images. 
Plaque delineated features are shown with arrows. 

 

Figure 10 A set of postsegmented stacked carotid 
endarectomy images shows reconstructed image 3D 
display. The display demonstrated the plaque size V and 
wall area ‘a’ features at various angles θ. The insert on 
top shows the plaque dimension in one cross-section. 

 

Figure 11 Continuous display of endarterectomy 
sample shows the 3D reconstructed MIP images(top 
left); 3D plane cut to show calcification in transverse 
plane (top right); surface rendering in 3D box(bottom 
left); and 3D plane cut to show calcification in 
longitudinal plane(bottom right). 
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Figure 12 Deformable model and SNAKES 
parametric method shows the contours on outer and 
inner walls to measure wall thickness (bottom right). 

 

Figure 13 A semi-automated delineation method 
shows the outer and inner boundaries of carotid walls 
on serial slices of a endarterectomy sample (right). For 
comparison, different serial image slices are shown 
before delineation (left). 

Deformable models and SNAKES for wall 
thickness segmentation: Deformable parametric 
models of contours of outer and inner walls 
generated automated wall thickness curves at 
different levels of carotid artery (Figure 12). The 
SNAKES as contours were pixel transformations 
at different angle. The semi-automated method of 
delineation in contiguous image slices may be 
summed up to measure total plaque burden 
(Figure 13). The measurement accuracy of outer 
and inner wall is demonstrated in in vivo MRI 
image (Figure 14). 

Evaluation of segmentation: Deformable models 
extracted out the carotid plaque boundaries and 
wall thickness from MRI images and generated 
parametric curve and parametric surface by object 
delineation (plaque and lumen size) and 

bifurcation landmark as surrogate marker. Object 
recognition was accomplished by distinct T1, T2 
and proton density signal intensities of plaque 
features and clear edges of carotid vessel wall. 

Color-coded feature maps: Non-parametric 
trained data sets of feature maps shown 
measurable lumen size and wall thickness at 
various transverse sections. These could be used as 
indicators of tissue composition (Figure 14). 

Plaque Voluming: Outer and inner radii and size 
of plaque rich segment, volume of plaque from in 
vivo MR images was measured. However, other 
method of plaque volumetry used summing up of 
all plaques areas in every slice (Figure 10). 

Discussion 

Carotid artery atherosclerosis imaging is 
investigated as important clinical-decision making 
modality for plaque vulnerability. 3D 
segmentation techniques are in developing stage 
but very promising in tissue classification using in 
vivo MRI methods. 2D/3D time-of-flight FSE or 
GRE methods are now available for fast vascular 
imaging. So, segmentation plays crucial role and as 
challenge due to its several trade-offs. Main 
emphasis was focused in recent years on 
dimensionality and quantification of carotid artery 
morphology features. However, success was 
limited but encouraging for parametric and non-
parametric segmentation on one hand while 3D 
voluming and surface or volume rendering showed 
window for time-dependent dynamic angiography 
applications. Present time interest in plaque 
constituents and feature analysis at different levels 
of carotid bifurcation image slices was reported as 
good indicator of plaque instability and 
vulnerability.20 Of specific mention, these images 
of carotid artery on multicontrast (using T1, T2 
and proton density) protocol visualize better 
segmentation and contrast information on these 
three image sets. In previous report, T1/T2/proton 
density multiparametric approach allowed 
interactive segmentation by color cluster statistics 
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(as 3D histograms) and tracking stereo display of 
different tissue constituents.21 Carotid artery 
bifurcation is used as a landmark for overall vessel 
segmentation process. 

 

Figure 14 A set of transverse color-coded post-
segmented feature maps of an atherosclerosis plaque at 
different levels show wall delineation and lumen size. It 
calculates the vascular wall composition as shown 
distinct colors of different features. 

3D skeleton build-up is important approach as 
guide map for segmentation. From quantification 
point of view, center of vessel and a priori 
knowledge of carotid artery is important for 
segmentation tasks such as artery-vein separation, 
object extraction. Most of the time, image 
acquisition suffers from partial volume effects and 
intensity non-uniformities. From the quantitative 
point of view, several segmentation methods 
overcome these non-uniformities. Among them, of 
special importance are thresholding (shape-based 
histogram techniques, optimal thresholding either 
by non-parametric optimal or parametric optimal, 
Maximum Likelihood methods) and edge-based 
methods (border tracing, graph searching, dynamic 
programming, advanced border detection, Hough 
transforms). Other methods include region-based 
segmentation(region growing, region splitting and 
merging, connected component labeling) and 

various classification methods, such as clustering 
algorithms (parallelepiped, minimum distance, K-
means ISODATA, Fuzzy C-means), Bayes 
classifiers, k-NN, Adaptive fuzzy c-means with 
INU estimation, decision trees, ANN (Feed 
forward ANN, Kohonen ANN) and contextual 
classifiers.22 

In this study, the display of three-dimensional 
angiograms used a priori knowledge of quantitative 
shape features such as tangent and curvature of 
the centerline of vessels. These could be obtained 
in previous reports from a curve-like skeleton 
representation.23 If connectivity and topology were 
preserved, and if geometrical constraints such as 
smoothness and centeredness were satisfied, it was 
possible to estimate length, orientation, curvature, 
and torsion (Figure 2). An efficient robust method 
for the identification of such shape components 
was developed. First, a suitable representation was 
obtained using a voxel-coding approach to yield 
connected and labeled unit-thick paths. The 
desired features were estimated from a smoothed 
version of the skeleton produced by a moving 
average filter.24 Previously, most investigators 
reported standard fast spin-echo sequences for 
atherosclerotic plaque distinct MRI signals 
appearing as darker lipid rich core and lighter 
fibrocellular tissue by T2-weighted sequences.8,9 
These factors were highlighted in this study 
showing further the need of T1-weighting using 
frequency selective sequences with very short TE 
for achieving good contrast between atheroma and 
fibrous tissue. In recent studies, monitoring of 
progression or regression of atherosclerotic lesions 
of carotid aorta and lumen stenosis or wall 
thickening in serial images and use of 2-D/3-D fast 
spin-echo proton density weighted images 
improved contrast–to-noise ratio and 
discriminated lumen, peri-adventitial fat and 
plaque. Common carotid intima-media thickness 
and atherosclerotic lipid-rich plaque 
characterization at carotid bifurcation served as 
unique indicators of generalized atherosclerosis. 
Other approach of enhancing in-plane resolution 
was based upon using short TE, T2 weighting MR 
imaging to define better plaque region by Morrisett 
et al.10 In that study, intravascular T2 weighted 
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imaging generated better MR contrast resolution. 
It served well by placing phased array coils closer 
to carotid artery wall using short TE for ‘high 
spatial resolution’ weighted images. The present 
report supports previous multicontrast approach of 
selection (T1/T2 and proton density weighted 
MRM) to acquire maximum signal-to-noise ratio 
(SNR) for better segmentation of plaque 
components in 1 mm thick MRM slice. 
Differentiation of plaque components by T2 
contrast resolution at 9.4 T generates 
discriminated plaque structural components after 
segmentation to distinguish calcification, fibrous, 
collagen, elastin, hemorrhage, crystalline 
cholesterol, other lipids based upon different MR 
signal intensities due to their MR visible distinct 
proton species. Atheroma and fibrous cap in 
plaque images are generally considered to 
represent plaque instability and generate optimized 
contrast by selecting TE and TR values.10 

Parametric imaging of segmentation and 
quantification of plaque components based on 
their TE and TR values could be accomplished 
with high degree of sensitivity and specificity on 
T1 parametric and T2 parametric segmentation. 
T1 parametric segmentation was better for vessel 
geometry and T2 parametric segmentation was 
better for classification. These values appear to 
provide information of noninvasive in vivo 
application of MRI criteria. Specifically, T2 values 
micro dissected the necrotic core at different sets 
of TE values to overcome the problem of observed 
darker T2 images than actual low signal of plaque 
thrombus and fibrous components. T1 weighted 
images provide less information than T2 weighted 
images or proton density weighted images. So, it 
needs appropriate TE and TR choice for in vivo 
microimaging application. 

In supervised semiautomatic parametric 
segmentation generated color-coded feature maps 
for each plaque features that measured the 
composition of plaque. Interestingly, stacked 
image slices and the inclusion of T1 based images, 
as a third input, produced significant improvement 
in the delineation and curvatures of carotid vessel 
wall and it supports earlier reports.25,26 Volumetric 

segmentation techniques visualize 3D to 2D 
projections such as object-based approach to 
reconstruct the artery but less known and possible 
future hope. However, these help to calculate the 
plaque volume and lumen quantification directly 
from MRI image by iterative dilatation approach 
by starting distal artery end traveling in proximal 
direction along the center of vessels, determining 
the lumen boundaries.18 

3D reconstruction and surface and volume 
rendering techniques promise for cross-sectional 
multislice axial, coronal and sagittal comparisons 
and a future hope of 3D registration of multi-
session studies for drug or therapy 
monitoring.12,20,21,27 The study has limitations due 
to its preliminary evidence to demonstrate the 
possibilities of less known robust segmentation 
power of different algorithms to be applied in 
clinical studies. Segmented images, however, may 
evaluate wall thickness, lumen size, plaque 
volumes, diagnosis, location of pathology, vascular 
anatomical structure, treatment planning, partial 
volume correction of vascular dynamic imaging 
data, and computer integrated endarterectomy. 

Conclusion 

Segmentation algorithms of 3D segmentation 
based on object delineation and object recognition 
of atherosclerosis vascular wall and plaque 
features; surrogate markers; validation with 
SNAKE algorithm provide evaluation of carotid 
artery atherosclerosis disease burden. It may be 
applied to in vivo MRI images of carotid artery 
vessels to estimate carotid artery atherosclerosis 
plaque burden and its feature identification. 
Segmented images can be used in femoral and 
other major vessels to evaluate the risk of 
atherosclerosis. 
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