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Abstract. In method comparison studies, the 
measurements taken by two methods are 
compared to assess whether they are equivalent. If 
there is no analytical bias between the methods, 
they should provide the same results on average 
notwithstanding the measurement errors. This 
equivalence can be assessed with regression 
techniques by taking into account the 
measurement errors. Among them, the paper 
focuses on Deming Regression (DR) and Bivariate 
Least-Squares regression (BLS). The confidence 
intervals (CI's) of the regression parameters are 
useful to assess the presence or absence of bias. 
These CI's computed by errors-in-variables 
regressions are approximate (except the one for 
slope estimated by DR), which leads to coverage 
probabilities lower than the nominal value. Six 
bootstrap approaches and the jackknife are 
assessed in the paper as means to improve the 
coverage probabilities of the CI's.
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Izvleček. V študijah primerjave metod 
primerjamo meritve z dvema metodama, da bi 
ocenili, ali sta ekvivalentni. Če nobena od metod 
ni pristranska, moramo z njima v povprečju dobiti 
enake rezultate ne glede na napake merjenja. 
Tovrstno ekvivalentnost lahko preverjamo z 
regresijskimi pristopi, ki upoštevajo merske 
napake. Prispevek se osredotoča na Demingovo 
regresijo (DR) in bivariatno regresijo po metodi 
najmanjših kvadratov. Z intervali zaupanja (IZ) za 
regresijske parametre lahko ocenimo, ali je 
prisotna pristranost. IZ so pri regresiji za 
spremenljivke z merskimi napakami le približni 
(razen za ocenjeni naklon pri DR), zato je 
dejanska stopnja zaupanja nižja od deklarirane. 
Prispevek primerja šest oblik zankanja in metodo 
pipca kot pristope za izboljšanje ustreznosti stopnje 
zaupanja IZ. 
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Introduction 

The needs of the industries and laboratories to 
quickly assess the quality of products or samples 
leads to the development and improvement of new 
measurement methods that should be faster, easier 
to handle, less expensive or more accurate than 
the reference method. These alternative methods 
should ideally lead to results comparable to those 
obtained by a standard method [1]. Ideally, there 
should be no bias between the two methods, i.e., 
the measurement methods should be 
interchangeable. 

Different approaches are proposed in the literature 
to deal with method comparison studies. The most 
widely known and used is the approach proposed 
by Bland and Altman, which focuses directly on 
the differences between two measurement 
methods [2-4]. The approach based on regression 
analysis (a linear functional relationship [5]) is 
also widely applied; it focuses on the parameter 
estimates and their confidence intervals (CI's) [6]. 
This paper deals with the regression approach. In 
order to statistically test the equivalence between 
two measurement methods, a certain 
characteristic of a sample can be measured by the 
two methods in the experimental domain of 
interest. The pairs of measurements taken by the 
reference method and the alternative one can be 
modelled by a regression line and the parameter 
estimates used to test the equivalence. Obtaining 
an intercept significantly different from zero in 
such regression indicates a systematic analytical 
bias between the methods, and a slope 
significantly different from one indicates a 
proportional bias [6]. To perform the regression 
correctly it is essential to take into account the 
errors in both variables (i.e., dimensions, axes) and 
the heteroskedasticity if necessary [6]. Various 
types of regressions exist to tackle this problem 
[7]; this paper focuses on the Deming Regression 
(DR) and Bivariate Least Square (BLS), as well as 
the basic Ordinary Least Square (OLS) regression. 

It is known that the coverage probabilities of the 
approximate confidence intervals computed by DR 

or BLS can be lower than the nominal level 
especially when the ratio of the measurement 
errors' variances is lower than one. In the paper, 
different bootstrap procedures are briefly explained 
and assessed with simulations in order to improve 
these coverage probabilities and thus obtain more 
precise confidence intervals. The systolic blood 
pressure data set published by Bland and Altman 
[2] is used to illustrate these techniques. 

How to test the equivalence? 

In the systolic blood pressure data [2], 
simultaneous measurements were made using a 
sphygmomanometer and a semi-automatic blood 
pressure monitor. The Bland and Altman 
approach focuses on "practical" equivalence to 
assess whether the observed differences between 
the two measurement methods are meaningful or 
not in practice. The present paper focuses on 
"strict" or "statistical" equivalence. The bias 
between the two devices is considered because the 
two devices should provide equal (equivalent) 
measures notwithstanding the errors of 
measurement. 

The standard design in method comparison studies 
is to measure each specimen/subject once using 
both devices/methods. However, with such design 
it is not possible to estimate the variances of 
measurement errors, as explained below. 

The general model 

To compare two measurement methods, a 
parameter of interest is measured on  sampling 
units 1, 2, … ,  by both methods [10-12]: 

; , (1) 
where 1,2, … ,  and 

1,2, … ,  are the repeated measures for 
unit  by methods  and , respectively, and  
and  are the number of repeated measures of 
unit  by each method.  and  are the true but 
unobservable values of the parameter of interest 
for both methods, which are assumed to be linked 
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by a linear relationship [10-12]: 
. (2) 

The means of the repeated measures for the unit  
are given by  and : 

∑  and ∑ ; (3) 

 and  are the measurement errors, which are 
supposed to be independent and normally 
distributed (with constant variances under 
homoskedasticity): 

~N 0
0
,

0

0
. (4) 

Hence, the means of the repeated measures are 
also normally distributed around  or : 

~N ,
0

0
. (5) 

If the variances  and  are unknown, they can 
be estimated with repeated measures; otherwise, 
these variances are unknown and inestimable. The 
estimates of  and  are given by  and : 

∑  and 

∑ . (6) 

In further explanations, the following notation will 
also be used: 

∑  and ∑ ; 
∑ ; ∑  and 
∑ . 

The homoskedastic model 

Under homoskedasticity, the measurement errors 
variances are constant through the domain of 
interest 	and	 	∀ . Moreover, a 
constant number of replicates will be assumed 
(  and 	∀ ) to prevent the model 
from becoming heteroskedastic even if the 
accuracies of the measurement methods are 
constant. Under homoskedasticity, the variances 

 and  are estimates of  and  and the 
"overall" estimates for  and  are given by  
and : 

∑

∑
 and 

∑

∑
, (7) 

or with constant repeated measures: 
∑

 and 
∑

. (8) 

How to test the equivalence? 

If the two measurement methods are equivalent, 
they should give the same results for a given 
sample notwithstanding the measurement errors. 
In the model notation, method equivalence means 
that 	∀  [6,13]. In practice, due to the 
measurement errors, these parameters are 
unobservable and the equivalence test will be 
based on the following regression model: 

 with ~ 0,  and 

, (9) 

where the intercept  and the slope  are 
estimated respectively by  and . This regression 
model is applied on the averages of repeated 
measures because individual measures cannot be 
paired. 

The estimated parameters  and  provide the 
information to assess the equivalence. An 
intercept significantly different from 0 means that 
there is a constant bias between the two 
measurement methods, and a slope significantly 
different from 1 means that there is a proportional 
bias between the two measurement methods [6]. 
Therefore, the following two-sided hypothesis will 
be used to test method equivalence: 
: 0	; : 0 and  
: 1	; : 1. (10) 

The null hypothesis : 0	 is rejected if 0 is 
not included in the confidence interval (CI) for  
and the null hypothesis : 1	 is rejected if 1 
is not included in the CI for . The joint CI is not 
considered in this paper. 
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OLS regression versus errors-
in-variables regressions 

This section briefly reviews the formulas for the 
estimation of a regression line by means of the 
commonly used Ordinary Least Squares (OLS) 
regression when  is observed without errors. 
Next, the formulas for two errors-in-variables 
regressions are provided – the Deming Regression 
and the Bivariate Least Squares regression. Note 
that in practice  or/and  can be estimated 
with replicated data and replaced by  or/and  
if needed. 

Ordinary Least Squares (OLS) regression 

The easiest way to estimate the parameters  and 
 of model (9) under homoskedasticity is to apply 

the basic technique of OLS [12-13]. The OLS 
regression minimises the sum of squared vertical 
distances (residuals) between each point and the 
line as shown in Figure 1. The corresponding 
parameter estimators are given by the following 
formulas: 

 and . (11) 

 

Figure 1 Illustration of OLS and DR-BLS regressions 
criteria of minimisation. 

Unfortunately, the OLS minimisation criterion 
does not take into account the errors in the 
independent variable [14]. OLS supposes that 
there is no error produced by the measurement 
method assigned to the X-axis, i.e., the  are 
supposed to be equal to zero or negligible. The 

corresponding estimates are therefore obviously 
biased [14]. 

Supposing that 0, the 100(1–γ)% CI for  is 
symmetric around  and is computed as [15] 
CI : ;  (12) 

with  and 

∑ , (13) 
where / ;  is the 100(1–γ/2)% percentile of 
a t-distribution with 2 degrees of freedom. 

In the same way, the 100(1–γ)% CI for  is 
symmetric around  and can be computed as 
CI : ;  with 

. (14) 

These CI's are exact under the assumptions of 
OLS, especially that of no errors in the X-values 

0  and normality of . 

Deming Regression (DR) 

To take into account the errors in both variables, 
the following ratio between the two error 
variances can be computed: 

⁄

⁄
. (15) 

It is the ratio of the errors' variance in the Y over 
the errors' variance in X. 

The DR is the Maximum Likelihood (ML) 
solution of model (1) when  is known [10]. In 
practice,  can be estimated with replicated 
data. 

The DR minimises the sum of the (weighted) 
squares of the oblique distances between each 
point to the line [11,16] as shown in Figure 1. The 
angle of the direction is related to  and given 
by ⁄  [11]. The ML estimators are: 

 and 

. (16) 
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The ratio  is assumed to be constant by DR. 
This assumption is fulfilled under 
homoskedasticity and balanced design (  and 

 constant). 

Gillard and Iles [17-18] propose to compute the 
variance-covariance matrix of the estimators using 
the method of moments. When  is assumed to 
be known, the variances of the estimators can be 
computed with the following formulas (modified to 
take into account the replicated data): 

, 

⁄ ⁄
. (17) 

The approximate and symmetric CI for  or  can 
be easily computed by associating a t-distribution 
to the standard error of the parameter because the 
estimators provided by ML are asymptotically 
normally distributed [19]: 
CI β : ;  and 

CI α : ; . (18) 

For the slope , an exact solution exists – the 
exact and asymmetric CI for  can be computed as 
follows [11]: 
Exact-CI : tan  where 
CI :  (19) 
with tan , arctan , 

arctan  and (20) 

arcsin ; √
∗

 (21) 

Bivariate Least Square regression (BLS) 

The BLS is a generic name but this paper refers to 
BLS as defined first by Lisý et al. [20] and later by 
other authors [6,21-23]. The BLS can take into 

account error and heteroskedasticity in both 
variables and is usually explained in matrix 
notation [6,21-23]. Here, the formulas are given 
under homoskedaticity with replicated data. The 
estimates of the parameters (the  vector) are 
computed by iteration using the following 
formulas: 

 (22) 
∑

∑ X ∑
∗

∑

∑
 (23) 

. (24) 

Note that , the weighting factor, is equal for 
each data point under homoskedasticity and 
equals the variance of the residuals. The vector  
provides the estimates  and ; under 
homoskedasticity it can be proven that 

 and . 

Riu and Rius [22] propose the following variance-
covariance matrix for the BLS parameters: 

, (25) 
or equivalently 

∑ ∑
 and 

∑

∑ ∑
. (26) 

The approximate and symmetric CI's for  or  
are then given by the following formulas [6]: 
CI : ;  and 

CI : ; . (27) 

Bootstrap in errors-in-
variables regressions 

In this section, two well-known bootstrap 
procedures (bootstrapping the pairs and bootstrap 
on the residuals) are briefly explained, as well as 
the jackknife procedure [24]. These approaches 
are compared using simulations and real data. 
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Jackknife 

The jackknife is a simplified version of the 
bootstrap, applied by the MedCalc software in 
method comparison studies and sometimes 
suggested in the literature [25-27]. The main 
advantages are its simplicity and its fast algorithm. 
Figure 2 illustrates the jackknife procedure for the 
estimation of a regression line. First, the regression 
line is estimated with the initial sample (the "true" 
sample) to obtain the estimated values of the slope 
and the intercept,  and . Then, each point in 
the scatterplot is removed alternately and for each 
step a new regression line is estimated.  
"pseudo"-regressions are therefore obtained, each 
with 1 points. When the point ,  is 
removed, the estimated slope and intercept are 
given respectively by  and . The jackknife 
estimators after  steps are respectively given by 

1 / ∑  and 
1 / ∑ α . (28) 

The CI's are computed by the jackknife procedure 
as follow: 
CI :  and 

CI : , (29) 

where ⁄  is the 1 2⁄  quantile of the 
standardized normal distribution, and 

∑ α ∑  and 

∑ β ∑ . (30) 

 

Figure 2 Illustration of the jackknife procedure for 
the estimation of a regression line. 
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Figure 3 Illustration of the bootstrapping the residuals procedure (left) and bootstrapping the pairs (right) for the 
estimation of a regression line (the circled point is a point resampled twice).

Bootstrapping the residuals 

Figure 3 (left) illustrates the bootstrap procedure 
on the vertical residuals. First, the regression line 
is estimated with the initial sample to obtain the 
estimated values of the slope and the intercept,  
and . Then, the vertical residuals are computed: 

 and these residuals 
are resampled: ∗ is the ith resampled bootstrap 
residual. These resampled residuals are added to 
the initial predicted values to get a pseudo-sample 
of size  where the ith point is , ∗ ∗ . 
This is repeated  times ( 1,… , ) and for 
each step the slope and the intercept are estimated 
(as well as their variances), respectively for the 
pseudo-sample  by ∗ (its variance being ∗ ) 

and ∗  (its variance being ∗ ). For each  step, 
the following standardised deviates are computed: 

,
∗

∗

∗  and ,
∗

∗

∗ . (31) 

At this point, two different approaches can be 
followed to compute a confidence interval: the 
bootstrap-t or the percentile bootstrap. The 
percentile bootstrap is certainly the easiest 

solution as the confidence interval is computed 
directly by the 2⁄  and 1 2⁄  percentile of the 
empirical distribution (i.e., the  values) of ∗ or 
∗ . The confidence interval by the bootstrap-t is 

computed as 
CI :

,
∗  and 

CI :
,

∗  (32) 

where 
,
∗  is the 1 2⁄  quantile of the ,

∗  

values and 
,

∗  is the 1 2⁄  quantile of the 

,
∗  values. 

Bootstrapping the pairs 

Figure 3 (right) illustrates the technique of 
bootstrapping the pairs. First, the regression line is 
estimated with the initial sample to obtain the 
estimated values of the slope and the intercept,  
and . Then, the points ,  are resampled 
where ∗, ∗  is the ith resampled point. This is 
repeated  times and for each step, as explained in 
the previous section, ∗ ( ∗ ) and ∗  ( ∗ ) are 
computed. For each  step, the following values 
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are obtained: 

,
∗

∗

∗  and ,
∗

∗

∗ . (33) 

As previously explained, the percentile bootstrap 
or the bootstrap-t can be applied on the ,

∗  or 

,
∗  values to obtain the confidence interval for  

or . 

Coverage probabilities of the bootstrap 
procedures 

In order to compare the coverage probabilities of 
the confidence intervals provided by the DR and 
BLS regressions and the bootstrap procedures 
presented in the previous sections, 104 samples 
were simulated with 10	and	50 with 
unreplicated data 1,	λ 	known  
under equivalence ( 0, 1, ) for the 
values of  and  described in Francq and 
Govaerts [19]. For each simulated sample, the CI 
is computed by DR and BLS and with the 
bootstrap procedures described in the previous 
sections (with 500). Note that the percentile 
bootstrap provides the same results for DR and 
BLS because  and , 
whereas the bootstrap-t provides different CI's for 
DR and BLS because the variances of the 
parameters are taken into account (and are 
computed differently for DR and BLS). Finally, the 

coverage probabilities of the slopes (with a 95% 
nominal level) are computed for a given . 

Figure 4 displays the coverage probabilities with 
respect to  (which is graphed on a logarithmic 
scale) for 10 (left) and 50 (right). The 
exact formula for the CI for the slope by DR 
obviously provides the best coverage probabilities; 
the approximate ones provided by DR or BLS are 
slightly lower, especially for 10 and also when 

1 for the BLS with 10 or 50. As 
expected, the jackknife approach provides 
coverage probabilities closer to the nominal level 
for 50 as the number of pseudo-samples is 
higher (the estimator obtained is therefore more 
precise). The coverage probabilities provided by 
bootstrapping the residuals collapse drastically 
when  decreases and when  increases, 
because the randomness of the errors in X is not 
taken into account by bootstrapping the vertical 
residuals. Lastly, the coverage probabilities 
provided by bootstrapping the pairs are very close 
to those obtained by the bootstrap-t technique on 
DR or BLS, while the percentile technique is 
slightly worse. When  increases, the three 
bootstrap techniques on the pairs move closer to 
each other and closer to the nominal level. It is 
noteworthy that bootstrapping the pairs can 
provide better coverage probabilities than the BLS 
formula, especially when 1 and 50.
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Figure 4 Coverage probabilities of the CI for the slope (β), for 10 (left) or 50 (right) related to λ (  
with ) in a logarithmic scale, for the Deming Regression (DR) with its exact formula or approximate one, the 
Bivariate Least Square regression (BLS) with its approximate formula, two bootstrap procedures (on the pairs or 
residuals) split into three approaches (percentile, bootstrap-t on DR and bootstrap-t on BLS) and the jackknife.

Application 

In the systolic blood pressure data [2], 
simultaneous measurements were made by two 
observers (denoted J and R) using a 
sphygmomanometer and a semi-automatic blood 
pressure monitor (denoted S) for 85 patients. The 
systolic blood pressure was measured three times 
per patient by S and three times per patient by J 
(R is not considered here; for a brief overview of 
other designs and approaches see a recent example 
of a method comparison study from the field of 
rehabilitation [28]). 

If the mean measurements given by S are assigned 
to the Y-axis and J to the X-axis, then it follows 
that the estimated value of  (=  as ) 
is 2.223, and therefore 0.956 and 

21.230 [19,29]. Figure 5 illustrates 
the different CI's for  computed using the exact 
and approximate DR formula, the approximate 
BLS formula, the jacknife procedure, and six 
bootstrap approaches (percentile method, 
bootstrap-t on DR or BLS, bootstrapping the pairs 

and bootstrapping the residuals). The exact DR 
formula provides a slightly asymmetric CI while 
the approximate DR and BLS CI's are symmetric. 
These three CI's are similar although the BLS one 
is slightly narrower. The CI obtained by jacknife is 
narrower than those obtained without resampling 
but the estimated slope is very similar to the 
previous ones. The bootstrap-t on either DR or 
BLS also yields very similar CI's while the 
percentile method provides a slightly wider CI and 
higher estimate. As expected, bootstrapping the 
residuals provides a shifted CI (upwards for the 
percentile method and downwards for the 
bootstrap-t). As explained in the previous section, 
the coverage probabilities of the bootstrap on the 
residuals collapse drastically and the CI's are 
therefore wrong because the randomness of the 
errors in the X variable is not taken into account. 

The hypothesis : 1	 is not rejected for the 
CI's computed directly by DR or BLS, the jacknife 
or by bootstrapping the pairs. On the other hand, 
this hypothesis is erroneously rejected for the 
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bootstrap on the residuals (except for the 
percentile method) as these CI's are shifted. 

 

Figure 5 The CI for the slope (β) for the Systolic 
Blood Pressure data computed by Deming Regression 
(DR) with exact and approximate formula, the 
Bivariate Least Squares regression (BLS) with 
approximate formula, two bootstrap procedures (on the 
pairs and on the residuals) split into three approaches 
(percentile, bootstrap-t on DR and bootstrap-t on 
BLS), and the jackknife. 

Conclusion 

Six different bootstrap procedures were compared 
in order to improve the coverage probabilities of 
the approximate confidence intervals for the 
parameters of the DR and BLS regressions. The 
bootstrap-t on DR or BLS provides very similar 
results. These two regressions are actually 
confounded under homoskedasticity and the 
variances of the parameters, though computed 
differently, are similar in practice. The jacknife is a 
simple method but its coverage probabilities are 
lower than the nominal level for small sample 
sizes, and its CI may therefore be too narrow in 
practice. Bootstrapping the residuals is not 
recommended as the coverage probabilities 
collapse and the CI's are shifted in practice. 
Bootstrapping the pairs is recommended to 
improve the coverage probabilities especially when 
the ratio of the measurement errors' variances is 
less than one. It can provide better coverage 

probabilities than the approximate CI computed 
directly by DR or BLS. Moreover, this bootstrap 
approach takes into account the measurement 
errors in both variables. 
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