
Holobar A, Zazula D: Surface EMG Decomposition 2

Research Paper 

Surface EMG 
Decomposition Using 
a Novel Approach for 
Blind Source 
Separation 

Aleš Holobar, Damjan Zazula  

Abstract. We introduce a new method to 
perform a blind deconvolution of the surface 
electromyogram (EMG) signals generated by 
isometric muscle contractions. The method 
extracts the information from the raw EMG signals 
detected only on the skin surface, enabling long-
time noninvasive monitoring of the 
electromuscular properties. Its preliminary results 
show that surface EMG signals can be used to 
determine the number of active motor units, the 
motor unit firing rate and the shape of the average 
action potential in each motor unit.
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Introduction  

The activity of muscles has been the subject of 
many studies of bioengineers, physiologists, 
neurophysiologists, and clinicians for more than 
100 years. Many different methods of gathering 
and interpreting the physiological data and 
information have been developed. In the past few 
decades, the assessment of the electrical activity of 
muscles has proved to be very important. Using 
the computer based digital processing, many 
valuable knowledge has been extracted from the 
electromyographic signals enabling precise medical 
diagnosing and prevention of possible neurological 
and muscle disorders1,2.  

The muscle movement in all human beings is 
controlled by the central nervous system. It 
generates the electrical pulses that travel through 
the motor nerves to different muscles. The neuro-
muscular junction is called innervation zone and is 
usually situated about the middle of the muscle 
body. Each muscle is composed of a large number 
of tiny muscle fibres, which are organized into so 
called motor units (MU). Each MU gathers all the 
fibres that are innervated by the same nerve, i.e. 
axon. When electrically excited, fibres produce a 
measurable electrical potential, called action 
potential (AP), which propagates along the fibres 
to both directions towards muscle tendons and 
causes the contraction of the fibres.  

The electromyograms (EMGs) are taken with 
different kinds of electrodes whose uptake areas 
vary according to the electrode size. The majority 
of the EMG recordings is based on the invasive 
methods with the needle electrodes3, whose 
invasive character prevents the long-time 
monitoring of the electromuscular parameters. 
The non-invasive method of the surface EMG 
(SEMG) has been developed recently and has 
numerous advantages. There is significantly less 
discomfort, no tissue damage and therefore no 
subsequent tissue scarring. This allows for 
unlimited repetition of tests in exactly the same 
place. Furthermore, recording of SEMG is 
inexpensive and gives global information about 

muscle activity1. Finally, linear surface electrode 
arrays can be used providing additional 
information about innervation zone location, fibre 
length and conduction velocity4.  

The main disadvantage of SEMG is poor 
morphological information about the MU action 
potentials (MUAP), caused by different filtering 
effects of several tissue layers (skin, fat, muscle, 
etc.)5. In the case of needle electrodes we can 
selectively observe the action potentials of only a 
few active motor units, or even of a single muscle 
fiber3. In the SEMG case, on the other hand, we 
deal with several tens of active motor units and 
the measurable contributions from other muscles 
not being under the clinical investigation, what is 
often referred to as muscle cross-talk. Many 
attempts to enhance the MUAP information and 
to suppress the cross-talk in SEMG were maid in 
the past as different surface recording technique, 
such as double differential, Laplacian, etc., were 
investigated6. Nevertheless, the manual 
decomposition of SEMG to separate MUAPs is, 
even with lower muscle contractions, virtually 
impossible and computer assisted decomposition is 
required.   

The non-invasive assessment of muscle properties 
through the information extracted from the 
surface EMG signals has introduced new issues 
also in the field of the EMG signal processing. 
Despite the numerous efforts7-11, no final 
technique for SEMG decomposition has been 
proposed yet. The main problem, as mentioned 
above, is a very high complexity of the SEMG 
signals. They are composed of a high number of 
individual, filtered MUAPs being superimposed 
into the surface signal. In addition, no a priori 
information on the number of active motor units 
and the nature of their mixture is available, either; 
hence the SEMG signals should be decomposed 
blindly. 

The blind separation of the sources has been 
widely studied in the past and many solutions exist 
for both instantaneous and convolutive mixtures12. 
The problem of instantaneous mixtures is most 
often addressed by exploiting the Actually, this 
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possible non-Gaussianity of the sources. is the only 
possible route when the source signals are 
independently and identically distributed 
(i.i.d)13,14. When the first ‘i’ of ‘i.i.d.’ is not valid, 
i.e. when the source signals are correlated in time, 
another route is to exploit these correlations. 
Identifiability in such an approach is granted even 
when the signals are normally distributed, 
provided the source signals have different 
spectra15,16. The contributions from other 
authors17-19 have explored the case where the 
second ‘i’ of ‘i.i.d.’ is failing, that is the non-
stationary case. The latter can be successfully 
applied to the problem of muscular cross-talk20.  

The problem of convolutive mixtures is much 
more complex and although many different 
attempts (wavelets and neural networks 
classifications, time-frequency decomposition, 
etc.) 12 were made there is no general solutions for 
their complete deconvolution. However, the 
theoretical model of SEMG signals is, under the 
assumption of stable measurements and isometric 
muscle contractions, usually based on convolutive 
mixtures of the nerve train pulses and MUAPs 
detected on different electrodes. Considering their 
time-varying nature, the SEMG signals can also be 
modelled as non-stationary signals. 

A. Belouchrani and M. Amin18, 19 have addressed 
general convolutive mixtures of non-stationary 
signals and exploited the differences of energy 
locations of sources in time-frequency (t-f) 
domain. They have proposed to deal with the 
convolution in the form of mixing matrix by 
adding delayed repetitions of sources. New sources 
then form the block diagonal source spatial t-f 
distribution (STFD) matrices. Hence, with joint 
block diagonalization24 of observation spatial time-
frequency distribution matrices several versions of 
each source can be retrieved, but only up to a 
filtering effect19. 

In this paper, we present preliminary results of a 
new method for full deconvolution of surface 
EMG signals. Our approach is based on the work 
of A. Belouchrani and M. Amin, however, it 
additionally suggests the construction of diagonal 

source STFD matrices. These latter matrices are 
processed into a joint-diagonalization scheme 
(instead of joint block diagonalization), which 
provides an estimation of the transfer functions 
(MUAPs detected on different electrodes) and 
sources up to the scale factor and the phase shift. 

Section 2 briefly reviews the algorithms and the 
problems of joint block diagonalization of spatial t-
f distribution matrices for the instantaneous 
(convolutive) mixtures. In Section 3 we propose a 
new method for the construction of diagonal 
spatial t-f distribution matrices in the convolutive 
case. Section 4 reveals results of the proposed 
method on the synthetic SEMG signals. We end 
our paper with the conclusions and discussion in 
Section 5. 

Separation of convolutive 
mixtures in t-f domain 

Consider a general discrete convolutive multiple-
input multiple-output (MIMO), linear, time 
invariant model given by 

∑∑
= =

+−=
N

j

L

l
ijiji tnltslhx
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)()()( . 

 
(1) 

,M), (ixi K1= is one of M observations and 

,N), (js j K1=  is one of N sources (M>N) that 

are mutually independent for every time/lag and 
have different structures and localization 
properties in time-frequency domain. hij is the 
transfer function between the j-th source and the 
i-th sensor with the overall extent of (L+1) taps. 
ni(t) (i=1,…,M ) is additive i.i.d noise, 
independent from the sources defined by. 

mttE Inn 2)()]()([ στδτ =+ , (2) 

where E is mathematical expectation, MI  the 
MM ×  identity matrix,  )(τδ the Dirac impulse 

and 2σ the unknown variance of the noise. 
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Eq. (1) can be written as19: 
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are extended vectors of sources and observations, 
respectively, and 
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A is )( KLNMK +×  mixing matrix with full 
column rank, but is otherwise unknown. Aij are 

)( KLK +× matrices where K is chosen such that 
MK> N(L+K). 

The covariance of vectors )(ts and )(tx is then19 

)],(,),,([
)]()([),(

~~~~
11

ττ
ττ

ttdiag
ttEt

NN ssss

ss

RR
ssR

K=
=+=

, 

 

(8) 

)(
2)(),(),( KLN

Htt ++= IAARR ssxx στδττ , (9) 

where   

















=
),(

),(
),(

~~

~~
11

τ

τ
τ

t

t
t

NN ss

ss

R00

0R
R ss MOM

L

 

 

(10) 

is block diagonal, 0 is matrix with elements all 
equal to zero, and ),(~~ τt

ii ssR denotes local 

×+ )( KL  )( KL +  correlation matrix of vector 

]1)((),...,([)(~ ++−= KLtstst iiis  

)](~)(~[),(~~ ttEt iiii
ssR ss ττ += . (11) 

)0,0(ssR  is generally block-diagonal since the 

correlations between )( 1τ+tsi and )( 2τ+tsi  are 

not necessarily zero19. 

In the time-frequency plane, equation (9) 
becomes19: 
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where ),( ftφ
xxD is  )( KLNMK +×  STFD 

matrix of )(tx  whose (k,l) entry is the cross- 
(auto) t-f distribution of Cohen's class22 for signals 
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),( qpφ denotes the kernel that characterizes the 
TF distribution. 

In a low-noise environment the noise term in (12) 
can be neglected such that 
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Hftft AADD ssxx ),(),( φφ ≈ . (14) 

Let W denote a MKKLN ×+ )( whitening 
matrix, such that 
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where ),(2
1

τtssR  denotes the block diagonal 

Hermitian square root matrix of source correlation 
matrix  ),( τtssR . Note that whitening matrix W 

can be obtained as an inverse square root of the 
observation autocorrelation matrix )0,0(xxR 18. 
More robust procedure for its calculation is 
described by Belouchrani et al.23. 

Pre- and post-multiplying the STDF matrices 
),( ftφ

xxD  by W leads to the whitened STFD-
matrices, defined as: 
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where )0,0(2
1

ssWARU = is a ×+ )( KLN  

)( KLN + unitary matrix and 

)0,0(),()0,0( 2
1

2
1 −−

ssssss RDR ftφ  is block diagonal 

(each block is of size )()( KLKL +×+ )19. 

According to (16), any whitened STFD matrix 
),( ftφ

zzD  is block diagonal in the basis of the 
columns of the matrix U and the missing unitary 
matrix U can be retrieved by block 
diagonalization24 of arbitrary ),( ftφ

zzD matrix. To 
increase the robustness of determining of U, we 
rather consider the joint block diagonalization of a 
combined set of several ),( ftφ

zzD  matrices19. 

Knowing the unitary mixing matrix U, the sources 
can be retrieved by: 

)()(ˆ tt H xWUs =  (17) 

and the mixing matrix A as 

UW #=A , (18) 

where superscript # denotes the Moore-Penrose 
pseudoinverse. 

According to (17) and (3), the recovered signals 
yield: 

)()(ˆ 2
1

tt xDRs ss= , (19) 

where D is unknown, block diagonal unitary 
matrix coming from the inherent indeterminacy of 
the joint block diagonalization24.. Hence, sources 
can be reconstructed only up to a filtering effect19. 

Assume now the matrices )0,0(~~
ii ssR  and 

),( ftφ
ssD diagonal in a particular (t,f) point. Then 

according to (16), the corresponding whitened 
STFD matrix ),( ftφ

zzD is diagonal in the basis of 
the columns of the matrix U (the eigenvalues of 

),( ftφ
zzD being the diagonal entries 

of ),( ftφ
ssD ). If, for a (t,f) point in time-frequency 

plane, the diagonal elements of ),( ftφ
ssD  are all 

distinct, the missing unitary matrix U can be 
uniquely retrieved (up to the order and the 
amplitude of the sources) by computing the 
eigendecomposition of ),( ftφ

zzD 18. In the case of 
degenerated eigenvalues, i.e., when the diagonal 
elements of ),( ftφ

ssD are not all distinct, U can 

be retrieved by joint diagonalization18, 19,21 of a 
combined set of ),( ftφ

zzD  matrices corresponding 

to (t,f) points for which ),( ftφ
ssD is diagonal.  

Joint diagonalization can recover the sources up to 
permutations, sign change and a constant factor 
(scale factor and phase shift in the complex case) 

18,21,25-27, since these modifications can be balanced 
by the mixing matrix A to provide exactly the 
same observations. This property is often called 
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the indeterminacy of the blind source separation 
(BSS) approach25-27.  

Separation of surface EMG 
signals 

Noninvasive nature of the SEMG recording 
enables several stable measurements of the motor-
unit electrical activity during isometric muscle 
contraction, forming MIMO theoretical model of 
SEMG signals. In such a model the SEMG signals 
are most often considered as convolutive mixtures 
of pulse trains (triggering pulses from innervating 
motor neurons), with different MUAPs as system 
impulse responses.  

Pulse trains in SEMG model can be interpreted 
as30: 

∑
∞

−∞=

=Θ+−=
n

inii ,...,NinTts 1for   )(δ , 
 
(20) 

where )(⋅δ  is the Dirac impulse, Ti are 

deterministic, and inΘ  random variables with 

Gaussian distribution. Again, the sources are 
assumed to have different localization properties in 
time-frequency domain, i.e. their pulses should not 
overlap in time. We will also assume that the 
average interpulse interval is longer then the 
length of the impulse response hij, i.e. L  in (1).  

Under these assumptions, the sources correlation 
matrix )0,0(ssR is diagonal. Moreover, the 

sources have well localized energy in time, which 
will become advantageous in the process of 
deconvolution, where we will try to make the 
STFD matrices ),( ftφ

ssD diagonal, too. 

Diagonal source STFD matrices  

To preserve a high time resolution, the Wigner-
Ville spectra defined by22 
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should be used as the time-frequency distribution 
in (13). Using any other distribution (kernel φ ) 
would spread the energy in time and made the 
source STFD matrices ),( ftφ

ssD block-diagonal.  

The main disadvantage of using the Wigner-Ville 
spectra is its high sensitivity to the crossterms 
(non-zero cross Wigner-Ville spectra ),( ftWV

jiss ), 

which, again, make the source STFD matrices 
),( ftφ

ssD block-diagonal.  The cross Wigner-Ville 

spectra in an optional (tk, fk) point is a summation 
of all the pulses from sources si and sj that fulfil 
the following relation: 

)(
2
1

jmink ttt += , 
 
(22) 

where tin is the time of appearance of the n-th 
pulse in source si, tjm  is the time of appearance of 
the m-th pulse in source sj, and ∞−∞= ,...,,mn . 
As a consequence, the source STFD matrix 

),( kk ftφ
ssD is not diagonal in such (tk, fk) point.   

We can reduce the number of pulse contributions 
in ),( ftWV

jiss by calculating pseudo Wigner-Ville 

spectra22, that is, by limiting τ in (21) to the finite 
interval [-a, a]: 

∑
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The number of pulses that contribute to 
crossterms in ),( ftPWV

jiss  depends on the size of 

the interval [-a, a] and is finite.  Making the limit 
a small enough, all the crossterms in ),( ftPWV

jiss  

are left out, and the source STFD matrices 
),( kk ftφ

ssD begin to show their diagonal 

structure. 
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The time-frequency plane has now shrunk, 
because we decreased the resolution of the 
frequency content in the Wigner-Ville spectra. 
This made the blind source separation less noise 
resistant, because the energy of the noise is now 
less spread along the frequency axis (the time-
frequency plane has the property of spreading the 
noise energy along the frequency axis while 
localizing the energy of the signal). As a 
consequence, we have to process longer signals to 
compensate the noise. However, the source STFD 
matrices ),( kk ftφ

ssD  are diagonal and we can 

now use the joint diagonalization 18,21,25-28 instead 
of joint block diagonalization24 and, hence, 
retrieve the unfiltered version of the sources up to 
a scale factor. 

Selection of diagonal STFD matrices in the 
case with overlapped pulses 

Assume certain pulses of the sources overlap. 
Denote by {l1,..., lp } the positions of p sources in 
vector of sources 

T
KLN tststst )](),...,(),([)( )(21 +=s whose pulses 

overlap at certain time tk  . The source STFD 
matrix ),( kk ftφ

ssD will then have p2 non-zero 

elements at the positions (k1,k2)  where 
},...,{, 121 pllkk ∈  as follows: 

p
dkk Mft =),(φ

ssD , (24) 
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where d denotes the energy of one pulse, and the 
assumption that all pulses have the same energy, 
like in (20), has been considered. Only p of p2 

non-zero elements in (25) lie on the diagonal and 
p

dM  is far from being diagonal.  Selecting the 

observation STFD matrices at time tk  strongly 
affects the performance of joint 
diagonalization18,21,25-28. 

Because U is a unitary matrix, the following 
relation is valid: 
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where eig(M) denotes the eigenvalues of the 
matrix M. Noting that the only non-zero 
eigenvalue of matrix p

dM is pdMeig p
d =)( , we 

can exclude the STFD source matrices that 
correspond to overlapped source pulses from the 
process of the joint diagonalization by simply 
comparing the maximum eigenvalues of the 
whitened observation STFD matrices ),( ftφ

zzD . 

Criteria and algorithms for the selection of (t,f) 
points in which ),( ftφ

ssD is diagonal are more in 

detail described  by Holobar et al.28 and by Nguyen 
et al.29. 

Results on synthetic SEMG 
signals 

In this section, the preliminary results, as 
investigated via computer simulations, are 
reported. SEMG signals were generated by SEMG 
simulator31, that allows to simulate the main 
features of the surface EMG signal, including the 
generation and extinction phenomena of the 
action potentials at the end-plate and tendon 
regions and the size and shape of the recording 
electrodes without approximation of the current 
density source. The simulator models the volume 
conductor as an anisotropic layered medium with 
muscle (anisotropic), fat (isotropic) and skin 
(isotropic) layers. The model allows simulation of 
multi-channel spatially filtered surface EMG 
signals and is based on efficient numerical 
algorithms, which implement the simulation of 
signals generated during voluntary contractions by 
the activity of a large number of MUs. The 
detection systems can be placed either along the 
fibres direction (usual linear electrode array 
configuration) or transversally with respect to the 
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muscle fibres. Motor units are placed randomly in 
the detection volume and are active at the 
selectable firing rates. 

In our experiment the surface EMG signals from 
the biceps brachii muscle during isometric 
voluntary contraction at low force level were 
simulated. The main parameters applied in our 
simulation were the following: 

1. MA(4,4) model was chosen, so 4 active 
MUs were assumed and 6 surface 
electrodes using the double differential 
recording technique were simulated what 
resulted in 4 measurements of SEMG. 

2. The length of muscle fibres in all MUs was 
set of 70 mm. The first MU with 9 fibres 
was assumed 6 mm, the second with 12 
fibres 4 mm, the third with 15 fibres 5 
mm, and the fourth with 10 fibres 3 mm 
deep in the muscle layer. 

3. Fibres of the MUs were inclined by 2, 8, 4 
and 7 degrees and shifted 7, -5, -2 and 6 
mm in the transversal (x in Fig. 1) 
direction from the centre of the electrode 
array, respectively. 

4. The spread of the innervation zone was 
taken 6 mm for the first, 6 mm for the 
second, 5 mm for the third and 5 mm for 
the fourth MU. 

5. The conduction velocity was assumed to 
be normally distributed with the mean of 4 
m/s and standard deviation of 1 m/s (4.54 
m/s for the first, 3.83 m/s for the second, 
4.33 m/s for the third, and 3.56 m/s for the 
fourth MU. 

6. The thickness of the skin layer was set to 
2 mm and thickness of the fat layer to 7 
mm. 

7. Mean firing rate of the first, second and 
the third MU were set to 13 Hz, 14 Hz, 

13Hz and 15Hz with the variance of 3 Hz, 
respectively.  

8. Rectangular electrodes of 5 by 1 mm were 
simulated with the 5 mm interelectrode 
distance. 

9. The electrode array was assumed placed 
between the innervation zone and the 
tendons of fibres. 

10. Transversal orientation of detecting 
system with respect to the muscle fibres 
was simulated in order to emphasize the 
differences in contributions (impulse 
responses) of different motor units to 
observations, that is to say, to improve the 
rank of the mixing matrix A. 

11. The sampling frequency of 1024 Hz was 
used for the generated EMG signals. 

12. The length of synthetic surface EMG 
signals was set to 5 s (5120 samples). 

13. Signal-to-noise ratio (SNR) was set to 15 
dB. 

The position and orientation of the detection 
system and the MUs is schematically depicted in 
Fig. 1, respectively. The generated SEMG signals 
are partially depicted in Fig. 2. 

 

Figure 1 Position and orientation of the detecting 
system with respect to the simulated active motor units. 
The MUs are depicted by grey lines ending with circles 
(tendons), innervation zones by striped rectangular, 
electrodes by black rectangular.  The depth, radius, 
inclination and the number of fibres in each MU is also 
depicted.  
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Figure 2 Parts of synthetic SEMG signals at four 
different channels. The detection system was placed 
transversally with respect to the muscle fibres. The 
interelectrode distance was set to 5 mm and double 
differential recording technique was selected.  

Setting the length of impulse response hij, to 26 
samples, 26 estimations of each source were 
calculated. The estimations were then classified, 
aligned, normalized, and summed together. They 
showed almost perfect match with the original 
sources. Almost all the triggering pulses were 
successfully recovered. The mean normalized 
energy of recovered pulses was 0.57 with the 
variance of 0.21 and the minimum value of 0.14. 
The ground jitter stayed bellow 0.18, with the 
mean value of –0.03 and the variance of 0.11.  
Note the ground jitter is proportional to the nose 
and exceeds the recovered pulses at the SNR of 8 
dB. The results for all 4 train pulses are partly 
depicted in Fig. 3.  

 
a) 

 
b) 
 

 
c) 

 
d) 

Figure 3 Comparison of the original innervation pulse 
trains (black) and corresponding retrieved sources 
(grey) over a 1s time interval for the first (a), second 
(b), third (c) and fourth (d) source, respectively. Notice 
the exact matching of the pulse trains. 

The recovered MUAPs showed a good match with 
the original ones, too.  The average absolute 
sample difference between the original MUAPs, 
detected by different electrodes, and decomposed 
MUAPs, expressed in percentage to the MAUP 
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amplitude span, was 7.3 %. The recovered 
MUAPs are partially depicted in Fig. 4. 
 
 

 
a) 

 
b) 

 
c) 

 
d) 
 
Figure 4 Comparison of the original MUAPs (black 
traces) and retrieved MUAPs (grey traces); the first 
MUAP in the third channel (a), the second MUAP in 
the fourth channel (b), the third MUAP in the second 
channel (c) and the fourth MUAP in the first channel 
(d). The impulse responses can be retrieved only up to 
a scaling factor; the amplitudes of the depicted impulse 
responses are normalized. 

Conclusions 

In this paper, a new approach for blind 
decovolution of surface EMG signals using pseudo 
Wigner-Ville time-frequency distributions is 
introduced. It takes the advantage of non-
stationary characteristics of sources (the 
localization of energy in time) and is based on the 
joint diagonalization of a combined set of spatial 
time-frequency (STFD) matrices. A diagonal 
structure of the source STFD matrices is essential 
for the proposed approach and is enforced by 
incorporating only the (t,f) points corresponding 
to the autoterms (diagonal elements in STFD 
matrices) of one particular source. The off-
diagonal elements in source STFD matrices are 
crossterms that become zero when calculating the 
Wigner-Ville spectra on the finite (short enough) 
interval. 

The proposed method shows a number of 
attractive features. The expansion of convolutions 
to instantaneous mixture makes the STFD 
matrices very large. As a consequence, the 
separation can be time and space consuming. Our 
approach simplifies and fastens the calculation of 
auto (cross) time-frequency distributions. 
Moreover, since the time-frequency distributions 
are shrunk along the frequency axis, the approach 
is also space efficient. As a result, longer signals 
can be processed, which compensates the 
potential noise cancellation due to the effect of 
spreading the noise power while localizing the 
source energy in time-frequency domain as a 
whole. Finally, the K estimations of each source 
(train of pulses) and its transfer function (MUAPs 
detected by different electrodes) are retrieved up 
to a scaling factor by our approach. Hence, the 
calculated sources and impulse responses can 
further be improved by averaging the 
corresponding estimations, which makes the 
approach more noise resistant. 

What are the limitations of our approach? Due to 
the uniqueness property of joint diagonalization18, 

21,25-28 and the structure of the searched source 
STFD matrices (only one non-zero diagonal 
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element), we have to find at least one source 
STFD matrix per source, i.e., each source 
(including the added delayed repetitions of 
sources) has to have at least one non-overlapped 
pulse. This situation is very probable when 
processing long enough signals and uncorrelated 
sources with low firing frequencies, i.e. surface 
EMG signals at low levels of muscle contraction. 
The performance drops at high contraction forces, 
due to the effects of motor unit synchronization32. 
A similar drop in performance is noticed at high 
firing rates (30Hz and more) when the interpulse 
intervals of sources become small in comparison to 
the length of impulse responses.  

The impulse responses in our model are modelled 
with constant coefficients. As a consequence, the 
changes of the shapes of MUAPs in time, such as 
caused by fatigue, are not recognized by our 
method. Moreover, the number of active motor 
units is assumed to be constant. As a consequence, 
motor unit recruitment during the constant force 
and muscle contraction of long duration 33, and 
increasing force, respectively, is not recognized by 
our method, either. Longer SEMG signals must be 
broken into subsequent epochs and processed 
separately. The recommended length of each 
epoch depends on the muscle type and is generally 
inversely proportional to the level of muscle 
contraction. Processing the SEMG signals 
detected in biceps brachii at 30 % of its maximum 
voluntary contraction, for example, the 
recommended length of each epoch is 
approximately 10 s.  

Due to possible permutations of source indices, 
caused by the indeterminacy of blind source 
separation, the reconstructed train pulses from 
each epoch may appear in the arbitrary order (two 
pulse trains, which are reconstructed from two 
different epochs and share the same index may 
correspond to different original pulse trains). In 
order to properly reconstruct the pulse sequences 
over all epochs, the subsequent epochs must share 
some common samples (we recommend each pair 
of subsequent epochs to share a half of common 
samples, i.e. 10 s long subsequent epochs should 
share 5 s of common SEMG signal).  Aligning the 

common pulses in recovered innervation trains we 
easily identify the permutations of source indices 
and form the whole sequence of triggering pulses 
for each active MU.  The MUAPs must retain 
constant only through the corresponding epoch, 
hence, the changes in the shape of MUAPs and 
the variation of the number of active MUs in time 
(subsequent epochs) can be monitored, 
respectively.  

The analysis of individual motor units is quite 
important in clinical electromyography. The 
amplitude and duration of the motor unit action 
potential provide information on the type of 
muscle disorder incurred by the peripheral nervous 
system, the length of time since the disorder's 
onset, and the evidence for recovery. Furthermore, 
the reconstruction of the MUAP trains provides 
information on the firing rate of the individual 
MUs and on the change of this rate during an 
increase or decrease of the muscle contraction 
level. No SEMG decomposition technique has so 
far provided this information, which makes our 
approach unique. 
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