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Abstract. In this paper we analyzed microarray 
data of patients with Huntington’s disease (HD). 
First, we preprocessed the data by using ribosomal 
genes expression levels as a way of normalization. 
After this, Predictive Clustering Trees (PCTs) 
were used to identify useful gene expression 
profiles and also to connect patient records with 
gene expression levels. In the end patients’ 
pathological characteristics which created the 
biggest difference in gene expression levels were 
identified, but also genes that could serve as a way 
of differentiating between patients and control 
subjects, or presymptomatic and symptomatic 
patients 
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Introduction 

Huntington's disease is an autosomal dominant 
neurodegenerative disorder characterized by 
progressive motor impairment, cognitive decline, 
and various psychiatric symptoms, with the typical 
age of onset in the third to fifth decades. It is 
caused by the expansion of an unstable triplet 
repeat in huntingtin gene, which encodes for 
ubiquitously distributed huntingtin protein. 
Recent studies have shown that mutant 
huntingtin interferes with the function of widely 
expressed transcription factors, suggesting that 
gene expression may be altered in a variety of 
tissues, including peripheral blood. That is why it 
has been postulated1 that microarray expression 
profiles obtained from peripheral blood samples of 
HD patients could be used to analyze the changes 
of gene expression levels caused by mutant 
huntingtin. 

The data were obtained as a part of a study 
conducted by Clinical Center Ljubljana, 
Department of Medical Genetics.  

This paper is organized as follows. First we give a 
brief description of the data that was available. 
Next we describe the preprocessing of the data, 
including the specific problem of re-normalizing 
the data between runs and filtering the important 
genes. The scenarios for the actual analysis of the 
data are further outlined. Also, a brief overview of 
the concept of Predictive Clustering Trees is 
given, as well as the software used for the analysis. 
At the end the results of the analysis are presented 
and also conclusions and plans for future work are 
detailed.  

Description of the data 

The patient records consist of three attributes: HD 
status (Presymptomatic, Symptomatic, Controls), 
Age (which was a continuous attribute) and Sex 
(Male, Female). 

The microarray data, on the other hand, is from 
Slovene patients obtained from three different 
runs. In the first one, microarray data was 
obtained for 4 presymptomatic and 3 control 
subjects, in the second for 5 presymptomatics and 
5 controls and in the third for 5 late symptomatics 
and 5 controls. All together, there were 27 
samples. For each sample the expression levels for 
54.675 probes from an Affymetrix HG.U133A 2.0 
chip were measured. The expression levels were 
obtained by using the MAS 5.0 software. 

Data preprocessing 

As part of the preprocessing procedure the 
attribute “Age” was first discretized. Because of 
the typical age of onset of the disease a 
discretization threshold of 40 years was chosen. A 
bigger preprocessing effort, however, was made 
with the microarray data. In order to have 
meaningful results from the analysis a necessary 
condition would be to have a sufficiently large 
sample size. This is especially important for 
microarray data analysis where thousands of genes 
are being analyzed simultaneously and where the 
ratio of samples vs. attributes is always an issue. 
During the preprocessing of the microarray data, 
we tried to solve two problems. The first one was 
putting the data obtained from different runs into 
a single dataset. Despite that the ratio of 
genes/samples was still too big. We did a gene 
selection process where we decided which genes 
should be considered for further analysis. In the 
end we obtained an acceptable ratio of 
genes/samples, which was a tradeoff between 
overfitting and losing genes which might be 
important. 

Ribosomal genes 

A re-normalization of the gene expression values 
has to be done with the help of some stable 
measure. We decided to do a re-normalization 
with the help of the expression levels of genes, 
which encode ribosomal proteins. Because 
ribosomes are basic particles of each cell, the genes 
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which encode them are always expressed. 
Therefore, their overall expression levels should be 
stable and also independent of the disease/control 
status. We used the ribosomal genes for two 
purposes. First we used them to check if re-
normalization between runs was necessary and 
then we used them to re-normalize. 

We marked the runs arbitrary with Run1, Run2 
and Run3. The data from each run was in the 
format presented in Table 1.  

Table 1 Data format for each run. 

Gene \ 
Sample 1S  2S  ... nS  

1G  1,1exp  2,1exp  ... n,1exp  

2G  1,2exp  2,2exp  ... n,2exp  

Μ ... ... ... ... 

mG  1,expm  2,expm  ... nm,exp  

1RG  1,1exp +m  2,1exp +m  ... nm ,1exp +  

2RG  1,2exp +m  2,2exp +m  ... nm ,2exp +  

Μ ... ... ... ... 

rRG  1,exp rm+  2,exp rm+  ... nrm ,exp +  

Explanation: In each run there were n samples and 
m+r genes. The set of ribosomal genes consists of the 
ones marked with “RG” and it has r genes. 

First we calculated the values for three vectors: 

321 ,, MeanMeanMean  

Each element from the vector was the value of the 
mean of the expression levels of a ribosomal gene 
for the corresponding run. 
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The check was made by calculating the ratios 
between the corresponding elements of each 
vector Mean i.e. the ratio between the means from 
different runs of each ribosomal gene. After this 
we again had three vectors containing the ratios:  
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If the values of the elements of Ratio are closer to 
“1”, that means that ribosomal expression levels 
are comparable for iRun  and jRun , and no re-

normalization is necessary. Therefore as a 
numerical measure to evaluate if re-normalization 
between each run is needed, we used the average 
difference of the ratios from 1. 
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There was no need to re-normalize between Run1 
and Run2. However, some kind of re-scaling 
would be necessary between Run1 and Run3, as 
well as between Run2 and Run3 (Table 2). 
Therefore, the data from Run1 and Run2 were put 
together (Run1-2) without re-normalization and 
then re-normalized with Run3. 
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Table 2 Average difference from “1” of the ratios of 
means of ribosomal genes from each run. 

Average 
difference 
from “1” 

Run1 Run2 Run3 

Run1 0 0.113288 0.259912 
Run2 0.113288 0 0.287245 
Run3 0.259912 0.287245 0 

 

Process of Re-Normalization 

The algorithm of the process of re-normalization 
can be described as follows: 

• Calculate means of expression of ribosomal 
genes from each run; 

• Calculate ratios of means between same 
ribosomal genes from different runs; 

• Eliminate ribosomal genes whose ratios have 
bigger deviation from the mean than the 
standard deviation; 

• Use the geometric mean of the selected subset 
of ribosomal genes to re-normalize. 

The first two steps were performed with the 
previously described equations. The third step was 
done to eliminate those ribosomal genes, which 
have too big difference in ratios and therefore 
should not be considered when determining the 
stable set of ribosomal genes. This step reduced 
the number of ribosomal genes for further 
consideration from 59 to 48. In the last step we 
took the remaining ribosomal genes and calculated 
their geometric mean. We then used this as a re-
normalization factor. 

kr
kriiii ribmeanribmeanribmeanfactorrn −

−= ,2,1, .,,.,.. Κ  

In the equation, r-k is the set of ribosomal genes 
which satisfy step 3 from the algorithm for re-
normalization. For Run1-2 we used a re-
normalization factor, =12. factorrn 8334.728 and 

for Run3, =3. factorrn 11327.16. We actually 

divided each number (gene expression level) with 
its’ corresponding re-normalization factor. In the 
end we got two new sets which could be combined 
directly. We calculated the new expression levels 
according to: 

i
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Selecting important genes 

Although we got 27 samples all together, that was 
still a small number compared to 54.675 probes. 
That is why we wanted to filter the genes further. 
First we eliminated the “background noise” genes. 
Only the genes with expression level bigger then 
100 in at least one sample in each run separately 
were included in further analysis. With this we 
ensured that the data obtained from a single run 
was not just a background noise. Further testing 
was done on the full sets. In order to identify genes 
which were differentially expressed in HD patients 
compared to controls a significance test (student t-
test) between patients and controls was performed. 
Only genes with p<0.05 were considered. Then 
the means of gene expression levels of HD patients 
and controls were calculated separately. We 
compared the ratio of these means and by using 
cut-off values of <0.6 and >1.8 we decided upon 
the final set of genes that were potentially 
significant for further analysis.1 

At the end of the preprocessing phase we got a 
dataset of 27 patients and 109 probes (genes). 

Data analysis using predictive 
clustering trees 

Considering the previous description of the data 
there were two major tasks. First we wanted to see 
the connection patient records-microarray data 
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and then microarray data-patient records. We 
used decision trees or the more general Predictive 
Clustering Trees (PCTs) as a way of connecting 
the data. The software that was used is a generic 
system for constructing decision trees- Clus. 
Before proceeding to details about the analysis a 
brief description of PCTs and Clus is given. 

Predictive Clustering Trees 
(PCTs) 

Decision trees are usually considered for 
classification purposes. Each tree consists of three 
elements: internal nodes, branches and leaves. 
The internal nodes are labeled with some attribute 
(variable name) and each branch is labeled with a 
predicate that can be applied to the attribute 
associated with the parent node. The leaves 
however, are labeled with a class. Following the 
branches from the root to a leaf gives sufficient 
conditions for classification (Figure 1). 

 

Figure 1 A typical classification tree with classes 
“pos” and “neg”. 

An alternate view of decision trees is that they 
correspond to the concept of hierarchical 
clustering.2,3 Each node (and leaf) corresponds to a 
cluster and the tree as a whole represents a kind of 
taxonomy or hierarchy. Thus we can use the 
concept of TDIDT (Top-Down Induction of 
Decision Trees) for inducing clustering trees. We 
assume that two types of functions exist. A 
prototype function, which is used to get the best 
description of the members of a cluster, and a 
distance function for measuring the distance 
between prototypes and also between members of 
the cluster and the prototype. When inducing the 
clustering tree the TDIDT algorithm uses as a 

heuristic the minimization of intra-cluster variance 
(and maximization of inter-cluster variance). The 
minimization of the intra-cluster variance means 
minimizing the average distance between the 
members of the cluster and the prototype, which 
describes it. Maximization of the inter-cluster 
variance maximizes the distance between the 
prototypes. At the end we get a clustering tree in 
which the top-level node corresponds to one 
cluster containing all of the data, which is 
recursively partitioned into smaller clusters while 
moving down the tree. The leaves of the clustering 
tree are clusters, but they also store information 
about the cluster prototype. Because in essence 
the prototype describes the cluster, it can also be 
considered as a prediction of the values in that 
cluster with a certain amount of error. 

The Clus system 

The system that was used for data analysis is called 
Clus. It is a generic system for constructing 
decision trees. It can be used for constructing 
classification trees, for predicting symbolic 
attributes, as well as for regression trees for 
numeric values prediction. Sometimes it is also 
useful for predicting several attributes at once so 
multi-objective trees can also be constructed 
(Figure 2).  

 

Figure 2 Multi-objective regression tree predicting 
values for two numeric attributes. 

Clus uses a standard recursive top-down induction 
algorithm to construct the decision trees similar to 
that of C4.5 and Cart. 

We use Clus by executing it in a “beam-search” 
mode. When run in this mode, Clus considers the 
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set of k best trees (the beam) found so far. This 
beam when initialized has one tree that consists of 
only one leaf node. During each iteration of the 
beam-search, the beam is modified by constructing 
all refinements of all trees in the beam. A 
refinement is obtained by replacing a leaf by a new 
internal node. This is repeated for each possible 
test that can be used in the internal node. If a 
refinement is better than the worst tree in the 
beam, then this tree is replaced by the new 
refinement. The score for sorting the trees in the 
beam can be based on accuracy or on entropy. The 
execution in beam-search mode ends if no better 
refinements are found and the beam of the k best 
trees is returned. 

Simulation of IC-clustering 

The first scenario of analysis was the simulation of 
the Itemset Constrained clustering (IC-
clustering)4 as a way of connecting patient 
records-microarray data. 

The idea of simulating IC clustering is the 
following: We have the patient attributes 
(Age>40, SexMale…) or combination of 
attributes (Symptomatic&Age>40, 
Age>40&SexMale…) which divide the patients 
(samples) into two groups- one group that has 
those characteristics (e.g. Age>40) and another 
one which does not (e.g. Age<40). We want to 
determine which attribute (or combination of 
attributes) creates groups whose members are most 
similar to each other in terms of their gene 
expression levels. 

The steps for this scenario for analysis are: 

• Find frequent itemsets from the patient 
records (attributes); 

• Use them as patient features; 

• Create PCT stubs with patients’ features as 
constraints. 

At the beginning we wanted to see which patient 
attributes appeared together most often- like 
“Symptomatic_Age>40”. After finding the 
frequent itemsets we used them as features. This 
means that if the patient (sample) is symptomatic 
and has more than 40 years of age, we assign the 
Symptomatic and Age>40 attribute but also the 
Symptomatic_Age>40 as a separate attribute. We 
use Clus in a beam search mode to construct PCT 
stubs (Figure 3) which are trees which contain 
only one internal node. The node contains the 
patient feature (the patient features are the 
descriptive attributes D) and the leaves just 
contain the information of the cluster size. 

 

Figure 3 PCT stub which is output from Clus. 

Determining useful gene 
expression profiles 

When talking about useful gene expression profiles 
we consider genes or set of genes which might 
prove useful for distinguishing two things: if a 
subject has HD or is healthy, but also to determine 
the progress of the disease of HD patients. First we 
tried to construct regular classification trees. The 
class we tried to predict was “Huntington” with 
class attributes HD and H (healthy). Then we 
used as a class “Stage” with three class values: P 
(presymtpomatic), S (symptomatic) and C 
(controls). For determining the accuracy of the 
decision trees we used a leave-one-out validation. 
However the accuracy was low in both cases. In 
the case of the class “Huntington” the accuracy 
was around 51% and in the case of Stage it was 
even lower around 44% (Table 3).  

Therefore we tried to improve the accuracy of the 
models by constructing PCTs. The PCTs were 
more specifically multi-objective decision trees 
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that used the two classes “Huntington” and 
“Stage” simultaneously (Figure 4). We persumed 
that this would help the algorithm to do a more 
informed decision when constructing the trees. 

Table 3 Comparison of accuracy for different types of 
decision trees 

Type of model Class Class values Accuracy 
Classification 

tree Huntington {HD,H} 51% 

Classification 
tree Stage {P,S,C} 44% 

Multi-objective 
classification 

tree 

Huntington 
Stage 

{HD,H} 
{P,S,C} 

74% 
74% 

 

 

Figure 4 Multi-objective decision tree with genes at 
the decision nodes. 

Table 4 The relationship between the two classes 
“Huntington” and “Stage”. 

Stage\Huntington  HD=true, 
H=false 

HD=false, 
H=true 

P true false false 
S false true false 
C false true 

 

The cross-validation showed that the accuracy 
rose to 74% for both classes. The reason why 
multi-objective decision trees performed better 

was because the two classes were correlated (Table 
4). 

In essence, we have put a constraint on the 
algorithm when trying to separate 
Presymptomatic, Symptomatic and Controls to 
prefer putting Presymtpomatic and Symptomatic 
in one cluster and Controls in the other. 
Furthermore, we used Clus in a beam search mode 
in order to see which are the best multi-objective 
trees that can be constructed. We found out that 
the top 203 trees have the same value for the 
intra-cluster variance. Each of these trees had 
three genes in its internal nodes.  

Results from the simulation of 
IC-clustering  

The results from the simulation of IC-clustering 
(Table 5) were somewhat expected. The attribute, 
which created clusters that had the minimal 
values for the intra-cluster variance was 
“Symptomatic”. This confirms the results from a 
previous study of HD1 that the biggest differences 
of gene expression levels were detected in HD 
patients that were symptomatic with respect to the 
presymptomatic and control subjects.  

Table 5 Results from the simulation of IC-clustering. 

Cluster 
rank Cluster description 

1 Symptomatic 
2 Control 
3 HD 
4 Symptomatic_Age>40 
5 HD_Age>40 

… … 
 

The clusters “Control” and “HD” had the same 
value for the intra-cluster variance and they were 
also expected results because they show that the 
clusters are less compact if they contain 
presymptomatic and symptomatic patients 
together i.e. HD patients. Symptomatic and 
Age>40 stresses the significance of the age of 
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onset of the disease connected to the appearing of 
the symptoms of HD. 

Results obtained with 
Predicitve Clustering Trees 

As mentioned previously the 203 models with the 
same intra-cluster variance were obtained from 
the beam search that was conducted with Clus. 
They were in essence the 203 models of multi-
objective classification trees, which were the best 
predicitive models of the data and for which the 
same accuracy assessment from the leave-one-out 
validation applied. The probes which were part of 
these models were identified and ranked according 
to their number of appearance in the models. In 
this way we identified altogether 39 probes. To see 
if any of the probes (genes) identified as significant 
were meaningful in biological context we searched 
for their function from the gene ontology 
database.5 

For seventeen of them little or nothing is known 
and cannot be matched to a known gene of 
biological function.  

Probes “1556462_a_at”, “226736_at”, 
“205101_at”,”1553983_at”are involved in 
processes related to transcription - transcriptional 
activator activity, transcription factor activity, 
transcription corepressor activity, pyrimidine 
metabolism, dTDP and dTTP biosynthesis, DNA 
metabolism. It has been previously shown that 
disturbed transcriptional activities are 
characteristic for HD.6,7 Therefore our finding that 
expression of these transcription-related genes is 
different in above described groups is even more 
suggestive that the transcription in HD is 
disturbed.  

Also, inappropriate protein functioning, synthesis 
and degradation has been documented in HD.8 
Probes “1558699_a_at”, “204581_at”, 
“240254_at”, “1555181_a_at”, “201041_s_at”, 
“228055_at”, 228056_at”, “204410_at” are all 
involved in different processes related to proper 

protein functioning, for example proteolysis and 
peptidase activity, protein modification, protein 
binding, protein amino acid glycosylation, protein 
biosynthesis, translational initiation or regulation 
of translation. 

Probe “221478_at” is predicted to have a role in 
induction and positive regulation of apoptosis, 
which is another process that is balanced out in 
HD.9  

Some of the remaining probes are involved in 
immune response 
(“209374_s_at”,”212671_s_at”,”222934_s_at”), 
intracellular signaling cascade 
(“239533_at”,”204484_at”) and some other 
processes, which are yet to be elucidated in the 
view of HD. 

Conclusion and further work  

In this study a lot of effort was made in the 
preprocessing phase and in finding a way to do a 
proper normalization of the gene expression data. 
Also, reducing the ratio of genes/samples was 
addressed and statistical filtering of the important 
genes was performed. As part of the analysis 
process of the microarray data an attempt was 
made to demonstrate the uses of PCTs for two 
purposes: as a way to connect the patient records 
with microarray data and also as a way to identify 
important gene expression profiles. Some of the 
genes that were identified could prove useful as 
biomarkers for Huntington’s disease, but further 
work and biological insights are needed in order to 
be able to make any kind of a significant claim and 
true validation of the results. This would include 
validation of the results by repeating the analysis 
on other HD microarray data sets and also by 
comparing results from different types of analysis 
and previous studies. 
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