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Samples t-Test in Cases of Missing Data: A 

Simulation Study 

Abstract. In our study, we explore the equivalence and performance of a paired samples t-test and linear mixed 
models (LMMs) in statistical analysis. While the equivalence holds under the assumption of paired data with 
complete cases, their performance differs in scenarios with missing values. Methods were compared based on their 
assumptions, test size, and power. In order to test different scenarios, we generated data with varying sample sizes 
and different percentages of incomplete cases, to highlight the advantages of LMMs over the paired sample t-test 
in handling missing data. Another impact considered in the study is the correlation between paired measurements. 
Based on our conclusions, we propose a user’s guide to help researchers determine when each test is most 
appropriate or equivalent, providing a practical framework for selecting the most suitable statistical method for 
their data. 
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Linearni mešani modeli kot alternativa parnemu 
testu t v primeru manjkajočih podatkov: 

simulacijska študija 

Povzetek. V naši študiji smo raziskali enakovrednost in učinkovitost parnega testa t in linearnih mešanih 
modelov (LMM) v statistični analizi. Enakovrednost med metodama velja pod predpostavko parnih podatkov brez 
manjkajočih vrednosti, a njuno delovanje se zelo razlikuje v primeru kršenja predpostavk. Metode smo primerjali 
glede na njihove predpostavke, velikost testa in moč. Za testiranje različnih scenarijev smo generirali podatke z 
različnimi velikostmi vzorcev in različnimi odstotki nepopolnih primerov, da bi poudarili prednosti LMM v 
primerjavi s parnim testom t pri obravnavi podatkov z manjkajočimi vrednostmi. Drugi vpliv, ki smo ga upoštevali 
v študiji, je korelacija med parnimi meritvami. Na podlagi naših zaključkov predlagamo vodilo za uporabnike, ki 
bo raziskovalcem pomagalo določiti, kateri test je v določenem primeru najprimernejši ali enakovreden. S tem 
zagotovimo izbiro najustreznejše statistične metode za njihove podatke. 

Ključne besede: linearni mešani modeli; parni test t; test t za neodvisne vzorce; manjkajoči podatki; korelacija. 
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Introduction 
In various scientific disciplines, researchers frequently 
encounter paired data, where two variables are 
dependent and correlated within each pair. This type 
of data is particularly prevalent in medicine, where the 
same individuals may be measured multiple times over 
a period or under different conditions, often resulting 
in “before and after” comparisons.1,2 

To determine whether an intervention has had any 
effect on subjects – specifically, whether there is any 
difference between measurements taken at two 
different time points – the paired sample t-test is the 
most commonly used statistical method. It assesses 
whether the average difference between paired 
observations is significantly different from zero, while 
considering the variance.3 

However, the paired samples t-test has certain 
limitations due to its underlying assumptions, 
discussed in detail in the next section. One key 
assumption is that the differences between paired 
observations are normally distributed. Many 
researchers have addressed violations of this 
assumption and have modified the original paired 
samples t-test to enhance its robustness.3,4 In this 
work, we focus on missing values, specifically the 
situation where some subjects have only one of the 
two measurements. In such cases, all incomplete cases 
are excluded from the data, thereby reducing 
statistical power of a paired t-test. 

Apart from modified versions of the paired samples t-
test, other methods, such as a corrected z-test have 
been proposed, specifically for dealing with data 
including both correlated and independent 
measurements. The latter method was shown to 
perform equal or better than a paired t-test, except in 
cases of very high correlation (ρ = 0.9).5 A more 
complex approach has been introduced in the form of 
a permutation test, which uses a test statistic that 
considers both the proportion of incomplete cases 
and the correlation coefficient between complete 
pairs.6  

Another alternative, explored in more detail in this 
study, are linear mixed models (LMMs). In cases of 
paired data without missing values, a paired t-test and 
LMMs yield the same results.7  

We investigate the conditions under which this 
equivalence no longer holds and assess which method 
performs better by testing various percentages of 
incomplete cases, different levels of correlation 
between pairs, and varying sample sizes. In cases of 
larger percentages on incomplete cases, the two 

variables lose their dependence and become less 
correlated, thus resembling independent samples. For 
this reason, an independent samples t-test was also 
included in the analysis. The performance of each 
method was evaluated by test size and test power 
calculations.  

Finally, we explore the dilemma of which approach is 
more advantageous: using a paired samples t-test, 
even if it means excluding a substantial portion of the 
data, or opting for an independent samples t-test, 
which ignores the information about correlation 
between paired observations. Both options were 
compared with a linear mixed model that uses all data 
and should hence have the highest power. These 
insights can help researchers make faster and more 
informed decisions when choosing the appropriate 
statistical test for their data. 

Assumptions and Properties 

Paired Samples t-Test 

For the proper application of a paired t-test, data 
should be organised into pairs, where observations 
within each pair are correlated, but observations 
between different pairs are independent. It is assumed 
that the correlation is the same across all pairs. Unlike 
an independent sample t-test, which compares the 
means of two independent groups, a paired sample t-
test compares the mean of differences between pairs 
to zero. The only assumption is that these differences 
are normally distributed.1 Because this test relies on 
the information about differences, it cannot use 
incomplete data cases where one of the measurements 
in a pair is missing. 

Independent Samples t-Test 

The data within a sample should be independent, and 
the data from two different samples should also be 
independent of each other1. The test compares the 
means of two independent groups while assuming 
that the data in each group are normally distributed. 
The basic version of an independent samples t-test 
assumes homogeneity of variance.8 However, when 
this assumption is not met, Welch’s t-test, which 
accounts for unequal variances, can be used instead. 

In our study, in the extreme case where one value was 
deleted from every pair of data, we effectively created 
independent samples, for which an independent 
samples t-test is typically used.  

Because an independent samples t-test retains more 
data in the analysis than a paired samples t-test (it does 
not exclude incomplete cases, as it does not treat the 
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data as paired), it exhibits greater power. However, 
when comparing the power of the two t-tests on the 
same data, the unpaired samples t-test only has an 
advantage when correlation within pairs is low.4 It has 
been shown that the power of a paired t-test surpasses 
that of an independent samples t-test when the 
correlation is at least 0.25.4,9 It should however be 
explored in more detail how incomplete cases 
influence this statement.  

Linear Mixed Models 

Linear Mixed Models (LMMs) extend basic linear 
regression models by enabling the modelling of 
correlations among observations. In addition to the 
fixed effects familiar from linear regression, LMMs 
introduce random effects2. They share several 
assumptions with basic linear models: the values of 
the response variable should be uncorrelated 
(independent) from each other,2,10 the relationship 
between the predictor and response variable should 
be linear, residuals are expected to be homogeneous, 
meaning their variability remains consistent across all 
levels of the independent variable, and the residuals 
should be independently normally distributed with a 
constant variance and the expected value of zero.10  

In addition to those assumptions, LMMs also make 
assumptions about the random effect coefficients and 
errors, which should be independent and identically 
distributed. These coefficients and errors are expected 
to be independent and constant within groups of 
observations. LMMs are more flexible and can use 
different distributions, although normal distributions 
are most commonly used,10 as they provide more 
flexibility in modelling.2  

Differences in Use 

Apart from paired data, in medical sciences, we often 
encounter non-independent data with more than two 
longitudinal measurements at the level of individuals 
as well as patches, cohorts, or measuring batches.10 
While a paired sample t-test is suitable for simpler 
experimental designs with a maximum of two 
longitudinal measures, LMMs are particularly useful 
for more complex data. They enable the analysis of 
hierarchical/multi-level data by allowing the inclusion 
of multiple fixed and/or random effects. Another 
significant advantage of LMMs is their ability to 
handle incomplete cases, thereby retaining more data 
in the analysis. 

In conclusion, to satisfy the assumptions of both 
methods, we need paired data with normally 
distributed differences between measurements and no 
missing values. 

Materials and Methods 

Software and Tools 

All simulations and graphic representations were 
conducted using R programming language (version 
4.2.1). The following libraries were utilised: “tidyr”, 
“dplyr”, “ggplot2”, “knitr”, “kableExtra”, 
“reshape2”, “nlme”, “lattice”, “xtable”, and “MASS”. 
Simulations can be reproduced using a seed of 123. 

Data Generation 

Data were generated from a bivariate normal 
distribution with specified mean vector and 
covariance matrix parameters. For the purpose of test 
size calculations, both means were set to 0. For test 
power calculations, the second mean was set to 0.3. 
The variances of both variables were consistently set 
to 1. Covariances were set to either 0.2 or 0.8. In this 
specific case, because the variances are set to 1, the 
covariances are equivalent to the correlations between 
the two variables. 

Test Size and Power Calculations 

To assess the validity of a test, the test size should be 
calculated. The test size indicates the proportion of 
times the null hypothesis is rejected when it is actually 
true. Ideally, the test size should match the 
significance level α, which is typically set at 0.05. Once 
an appropriate test size is confirmed, we can proceed 
with calculating the test power, an effective measure 
for comparing the performance of different statistical 
tests. Statistical power reflects the proportion of 
correctly rejected null hypotheses when the null 
hypothesis is indeed false. 

Test size and power were calculated across seven 
different sample sizes (10, 20, 50, 100, 150, 200, and 
500). For each sample size, scenarios with six different 
percentages of incomplete cases (0 %, 20 %, 40 %, 
60 %, 80 %, and 100 %) were examined. After data 
generation, a specified percentage of the data was 
randomly deleted. The deletion process ensured that 
half of the missing data were removed from the first 
column and the other half from the second column, 
with no data being deleted from both columns 
simultaneously, producing a desired percentage of 
incomplete cases. 

The data generation process and the subsequent 
calculations for test size and power were repeated 
1000 times for each scenario. Three statistical tests 
were applied to the generated variables: a paired t-test, 
an independent t-test, and a linear mixed model. The 
default R function was used for the t-tests, while linear 
mixed models were built using the “lme” function 
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from the “nlme” library. To make sure incomplete 
cases were not removed from the analysis, we set the 
parameter “na.action” to “na.exclude” within the 
“lme” function. If a test indicated that the two 
variables were significantly different (p-value < 0.05), 
the case was assigned a value of 1; otherwise, it was 
assigned a value of 0. Finally, the proportion of 
statistically significant iterations was calculated to 
represent test size (for data generated from a bivariate 
distribution with the same means, both set to 0) or 
test power (for data generated from a bivariate 
distribution with different means, set to 0 and 0.3). 

Results 

Results of Test Sizes 

Figures 1-3 display the test size for each method: 
paired samples t-test, independent samples t-test, and 

linear mixed model (LMM) at different sample sizes 
and percentages of incomplete cases across three 
scenarios: low correlation (ρ = 0.2), moderate 
correlation (ρ = 0.5), and high correlation (ρ = 0.8). 
We observe that the LMM and paired samples t-test 
remain closer to the 0.05 line across all levels of 
missing data, while the test size for the independent 
samples t-test approaches almost 0 as correlation 
increases. As the percentage of incomplete cases 
increases, the difference between the LMM and 
independent samples t-test decreases, especially in 
scenarios with lower correlation. In all three scenarios, 
the graph with 100 % incomplete cases is the same for 
both the LMM and independent samples t-test.

 

Figure 1 Test sizes across different sample sizes and percentages of incomplete cases at ρ = 0.2 (thin black lines mark the 
significance level α = 0.05). 
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Figure 2 Test sizes across different sample sizes and percentages of incomplete cases at ρ = 0.5 (thin black lines mark the 
significance level α = 0.05). 

 

Figure 3 Test sizes across different sample sizes and percentages of incomplete cases at ρ = 0.8 (thin black lines mark the 
significance level α = 0.05). 
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Results of Test Powers 

Figures 4-6 display the power of each method across 
different sample sizes and percentages of incomplete 
cases in three scenarios: low correlation (ρ = 0.2), 
moderate correlation (ρ = 0.5), and high correlation 
(ρ = 0.8). The independent samples t-test may 
outperform the paired samples t-test in terms of 
power, especially when the data are incomplete – 
specifically in cases with 40 % or more incomplete 
data and higher correlation. As correlation increases, 
the power of both the independent samples t-test and 
the paired samples t-test decreases. The LMM exhibits 
the highest power across all three scenarios, regardless 
of sample size or percentage of incomplete cases. The 
paired samples t-test performs as well as the LMM 
when the percentage of incomplete cases is low, but 
its power diminishes as the percentage of incomplete 
cases increases. Similar to the test size results, in all 

three scenarios the graph with 100 % incomplete 
cases is the same for both the LMM and the 
independent samples t-test. 

The Effect of Sample Size 

Regardless of the level of correlation, sample size 
significantly impacts the performance of all methods. 
This effect is more pronounced in the results for test 
power than in test size where the value is constantly 
around 0.05, regardless the sample size. To clearly 
illustrate the variations in power across different 
methods and sample sizes, the difference in means 
when generating data under the alternative hypothesis 
was intentionally set to a small value (0.3). 

When one test has a clear advantage over others, it is 
evident that it requires a smaller sample size to achieve 
adequate power. 

 

Figure 4 Test powers across different sample sizes and percentages of incomplete cases at ρ = 0.2 (thin black lines mark 
the desired power of 0.8). 
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Figure 5 Test powers across different sample sizes and percentages of incomplete cases at ρ = 0.5 (thin black lines mark the 
desired power of 0.8). 

 

Figure 6 Test powers across different sample sizes and percentages of incomplete cases at ρ = 0.8 (thin black lines mark 
the desired power of 0.8). 
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The Effect of Incomplete Cases 

While paired samples t-tests and linear mixed models 
perform equivalently with complete data, the presence 
of incomplete cases – where one of the paired values 
is missing – significantly impacts the performance of 
the paired samples t-test. The paired samples t-test 
discards all rows with any missing values, leading to a 
substantial loss of data and, consequently, a reduction 
in statistical power. In contrast, linear mixed models 
can still utilise the remaining data, making them more 
powerful in the presence of incomplete cases. 

This effect is evident in both low and high correlation 
scenarios. When correlation is low, it becomes 
noticeable at a lower percentage of incomplete cases. 
In such cases, slight differences in the performance of 
the two tests begin to emerge with as little as 20 % 
incomplete cases, with a more pronounced difference 
observed at 60 % incomplete cases. 

In the case of high correlation, however, the power of 
the two tests remains comparable until the proportion 
of incomplete cases reaches 60 %. 

A large percentage of incomplete data essentially 
reduces the dependence between the paired 
observations, resulting in less correlated data. In the 
extreme case of 100 % incomplete cases, the data 
effectively becomes two independent samples. For 
this reason, an independent samples t-test was also 
included in the analysis and is discussed in more detail 
in the section focusing on correlation. 

In this extreme case, a paired samples t-test cannot be 
used, as it eliminates all rows of data, leaving no data 
to analyse. As a result, the paired samples t-test does 
not appear on the graph for this scenario. 

The Effect of Correlation 

When comparing the test sizes, we observe that the 
independent samples t-test has a test size close to 
zero, particularly in cases of high correlation with 
complete data. As the percentage of incomplete cases 
increases and the correlation decreases, the 
independent samples t-test becomes less conservative, 
resulting in a test size comparable to the other 
methods. A highly conservative test typically results in 
lower test power because it sets a stricter threshold for 
rejecting the null hypothesis. 

It is evident that with data of lower correlation, an 
independent samples t-test outperforms a paired 
samples t-test, particularly when there is a large 
percentage of incomplete cases. In contrast, when the 
correlation is higher, the paired samples t-test retains 
greater power even with a high percentage of 

incomplete cases, though the difference in power 
between the two t-tests narrows. 

The difference in test size and power between the two 
t-tests arises from the way variance is calculated in 
each test. With a higher positive correlation, the 
paired samples t-test uses a smaller variance1. As a 
result, the standard error (SE) used in the calculation 
of the test statistic is also smaller. This makes it easier 
to reject the null hypothesis compared to the 
independent samples t-test. 

This is why, as demonstrated by our results, the paired 
samples t-test consistently performs better in cases of 
high correlation: it accounts for the correlation and 
therefore uses the appropriate variance. In contrast, 
the independent samples t-test overestimates the 
variance, and hence has lower size and power.  

In the extreme scenario of 100 % incomplete cases, 
resulting in two independent samples, both the 
independent samples t-test and linear mixed models 
produce equivalent results. 

Discussion 
In this section, we summarise how different factors 
influence the performance of linear mixed models, 
paired samples t-tests, and independent samples t-
tests, differentiating between four scenarios. 

When dealing with paired data, it is advisable to first 
check the correlation between the measurements 
from the first and second assessments. Additionally, 
it is important to verify that there are enough cases 
with both measurements available. Based on the level 
of correlation and the percentage of incomplete cases, 
we identify four distinct scenarios: 

■ Low correlation, few incomplete cases: In this 
scenario, a larger sample size is required to achieve 
adequate test power compared to situations with 
higher correlation. Although all three tests yield 
similar results, the linear mixed model and paired 
samples t-test tend to perform better. Either of 
those can be chosen. 

■ Low correlation, many incomplete cases: Using a 
paired samples t-test is no longer appropriate 
because of the limited amount of available data. A 
linear mixed model should be chosen instead. If 
the correlation is very low and there is a large 
percentage of incomplete cases, an independent 
samples t-test will perform equivalently. 

■ High correlation, few incomplete cases: Either the 
paired samples t-test or the linear mixed model can 
be used effectively. However, we strongly 
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recommend against using the independent 
samples t-test. 

■ High correlation, many incomplete cases: Use 
either the paired samples t-test or the linear mixed 
model. We still do not recommend using the 
independent samples t-test in this scenario. 

While linear mixed models offer a universal solution 
for data including both correlated and uncorrelated 
samples (incomplete cases), our study could be 
expanded to include other methods, previously shown 
to perform well on this type of data. It could be 
explored in more detail how, for example, a corrected 
z-test5 and a permutation approach6 perform in 
comparison to not only a paired samples t-test but 
also the LMMs. While a corrected z-test 
outperformed a paired samples t-test in most 
scenarios in the original simulation study, there was a 
case where a paired samples t-test exhibited greater 
power, which in contrast, never happened in our 
comparison to LMMs. Equivalently to LMMs, in the 
case of completely independent samples, a corrected 
z-test maintained power equal to that of an 
independent samples t-test.5 

Conclusion 
Our study highlights the importance of selecting the 
appropriate statistical test for paired data based on the 
specific characteristics of the dataset, particularly the 
level of correlation and the presence of incomplete 
cases. We found that while paired samples t-tests and 
linear mixed models perform similarly with complete 
data, the paired samples t-test loses its effectiveness 
when faced with lower correlations or high 
percentages of incomplete cases. In contrast, linear 
mixed models maintain robustness under these 
conditions, making them a preferable choice in many 
scenarios.  

The independent samples t-test, although less 
powerful in cases of high correlation, can outperform 
the paired samples t-test when correlation is low, 
particularly in the presence of missing data. These 
findings offer useful guidance for researchers in 
selecting the most suitable analytical approach based 
on their specific data characteristics. 
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